CodeForces - 1409 - Decrease the Sum of Digits - 【 贪心+数学 】题解
目录
- 1.题目
- 2.思路
- 3.AC代码
1.题目
You are given a positive integer n. In one move, you can increase n by one (i.e. make n:=n+1). Your task is to find the minimum number of moves you need to perform in order to make the sum of digits of n be less than or equal to s.
You have to answer t independent test cases.
Input
The first line of the input contains one integer t (1≤t≤2⋅104) — the number of test cases. Then t test cases follow.
The only line of the test case contains two integers n and s (1≤n≤1018; 1≤s≤162).
Output
For each test case, print the answer: the minimum number of moves you need to perform in order to make the sum of digits of n be less than or equal to s.
Example
Input
5
2 1
1 1
500 4
217871987498122 10
100000000000000001 1
Output
8
0
500
2128012501878
899999999999999999
2.思路
思路:sum(n)表示n的位数之和
题意:给你两个数n和s,可以进行n++操作,使得n的位数之和sum(n)<=s,所需要对n进行的最小操作步数.
我们发现想要让sum(n)<=s,n++肯定会使n的位数之和变大,比如n=3452,s=10,n++变为3453,3454, 3455,,,,3459,只有当n变为离它最近的能被10整除的数时,即3460时,sum(n)才会减少。
因此我们发现了一个规律:n变为m使得sum(m)<=s,m一定是可以被10整除的(观察测试样例也可以发现)
3.AC代码
#include<iostream>
#define ull unsigned long long
using namespace std;
ull f( ull n) //求出位数和
{
ull sum=0;
while(n)
{
sum+=n%10;
n/=10;
}
return sum;
}
int main()
{
int T;
cin>>T;
while(T--)
{
ull n,s;
cin>>n>>s;
ull ans=0,now=1; //now是 每次n++,执行的操作步数
while(f(n)>s)
{
if(n%10==0) n/=10,now*=10; //当n能被10整除时,其末尾为0,对位数之和无影响,我们去除最后一位
else ++n,ans+=now; //对应的下次进行n++时,执行的操作步数就要乘10
}
cout<<ans<<"\n";
}
return 0;
}
还没有评论,来说两句吧...