[LeetCode] 131. Palindrome Partitioning_Medium tag: DFS, backtracking, Palindrome
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
Example:
Input: "aab"
Output:
[
["aa","b"],
["a","a","b"]
]
这个题目我们可以理解为是s中不断决定是否要在该character的后面切一刀,可以切,可以不切, 2^n 种可能,让我们想到了subsets[LeetCode] 78. Subsets tag: backtracking,实际上就可以利用subsets的做法,只是temp存储的是s的index, 然后加上每切一刀的时候都要判断是否是palindrome,我们利用[Palindrome] Check any substring in a s is a palindrome or not. 来去优化时间复杂度。
T: O(2^n) 因为我们优化了palindrome substring。
Code
class Solution:
def palindromePartition(self, s):
ans, palin = [], self.generatePalin(s)
self.helper(s, [], 0, palin, ans)
return ans
def generatePalin(self, s):
n = len(s)
palin = [[False] * n for _ in range(n)]
for i in range(n):
palin[i][i] = True
if i and s[i] == s[i - 1]:
palin[i - 1][i] = True
for length in range(2, n):
for start in range(n):
if start + length < n and s[start] == s[start + length]:
palin[start][start + length] = palin[start + 1][start + length - 1]
return palin
def helper(self, s, temp, pos, palin, ans):
if pos == len(s):
ans.append(temp)
for i in range(pos, len(s)):
if not palin[pos][i]:
continue
self.helper(s, temp + [s[pos: i + 1]], i + 1, palin, ans)
转载于//www.cnblogs.com/Johnsonxiong/p/10921504.html
还没有评论,来说两句吧...