POJ-2777-CountColor(线段树,位运算)
链接:https://vjudge.net/problem/POJ-2777\#author=0
题意:
Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem.
There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, … L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board:
- “C A B C” Color the board from segment A to segment B with color C.
- “P A B” Output the number of different colors painted between segment A and segment B (including).
In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, … color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.
思路:
线段树,还是普通的线段树,染色的查询和更新使用位运算,因为颜色区间在(1-30)之内。
所以可以使用(1<<1-1<<30)来表示这中二进制1的个数来表示颜色的数量。
不过我之前的写的普通的线段树我也不知道为啥会WA。
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <memory.h>
#include <algorithm>
#include <string>
#include <stack>
#include <vector>
#include <queue>
using namespace std;
typedef long long LL;
const int MAXN = 1e5+10;
int Seg[MAXN*4];
int lazy[MAXN*4];
int Vis[100];
int n, t, o;
int res;
void PushDown(int root)
{
if (lazy[root] != 0)
{
Seg[root<<1] = (1<<lazy[root]);
Seg[root<<1|1] = (1<<lazy[root]);
lazy[root<<1] = lazy[root];
lazy[root<<1|1] = lazy[root];
lazy[root] = 0;
}
}
void PushUp(int root)
{
Seg[root] = Seg[root<<1]|Seg[root<<1|1];
}
void Build(int root, int l, int r)
{
if (l == r)
{
Seg[root] = 2;
return;
}
int mid = (l + r) / 2;
Build(root << 1, l, mid);
Build(root << 1 | 1, mid + 1, r);
PushUp(root);
}
void Update(int root, int l, int r, int ql, int qr, int c)
{
if (r < ql || qr < l)
return;
if (ql <= l && r <= qr)
{
Seg[root] = (1<<c);
lazy[root] = c;
return;
}
PushDown(root);
int mid = (l+r)/2;
Update(root<<1, l, mid, ql, qr, c);
Update(root<<1|1, mid+1, r, ql, qr, c);
PushUp(root);
}
int Query(int root, int l, int r, int ql, int qr)
{
if (r < ql || qr < l)
return 0;
if (ql <= l && r <= qr)
{
return Seg[root];
}
int mid = (l+r)/2;
PushDown(root);
int col1 = 0, col2 = 0;
col1 = Query(root<<1, l, mid, ql, qr);
col2 = Query(root<<1|1, mid+1, r, ql, qr);
return col1|col2;
}
int Get(int x)
{
int res = 0;
while (x)
{
if (x&1)
res++;
x >>= 1;
}
return res;
}
int main()
{
char op[10];
int a, b, c;
while (~scanf("%d%d%d", &n, &t, &o))
{
Build(1, 1, n);
while (o--)
{
scanf("%s", op);
if (op[0] == 'C')
{
scanf("%d%d%d", &a, &b, &c);
if (a > b)
swap(a, b);
Update(1, 1, n, a, b, c);
}
else
{
scanf("%d%d", &a, &b);
if (a > b)
swap(a, b);
memset(Vis, 0, sizeof(Vis));
int res = Query(1, 1, n, a, b);
printf("%d\n", Get(res));
}
}
}
return 0;
}
转载于//www.cnblogs.com/YDDDD/p/10847767.html
还没有评论,来说两句吧...