【leetcode】1035. Uncrossed Lines

Dear 丶 2022-01-10 06:11 264阅读 0赞

题目如下:

We write the integers of A and B (in the order they are given) on two separate horizontal lines.

Now, we may draw connecting lines: a straight line connecting two numbers A[i] and B[j] such that:

  • A[i] == B[j];
  • The line we draw does not intersect any other connecting (non-horizontal) line.

Note that a connecting lines cannot intersect even at the endpoints: each number can only belong to one connecting line.

Return the maximum number of connecting lines we can draw in this way.

Example 1:

142.png

  1. Input: A = [1,4,2], B = [1,2,4] Output: 2 Explanation: We can draw 2 uncrossed lines as in the diagram. We cannot draw 3 uncrossed lines, because the line from A[1]=4 to B[2]=4 will intersect the line from A[2]=2 to B[1]=2.

Example 2:

  1. Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2] Output: 3

Example 3:

  1. Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1] Output: 2

Note:

  1. 1 <= A.length <= 500
  2. 1 <= B.length <= 500
  3. 1 <= A[i], B[i] <= 2000

解题思路:本题可以采用动态规划的方法。记dp[i][j]为A[i]与B[j]连线后可以组成的最多连线的数量,当然这里A[i]与B[j]连线是虚拟的连线,因此存在A[i] != B[j]的情况。首先来看A[i] == B[j],这说明A[i]与B[i]可以连线,显然有dp[i][j] = dp[i-1][j-1]+1;如果是A[i] != B[j],那么分为三种情况dp[i][j] = max(dp[i-1][j-1],dp[i][j-1],dp[i-1][j]),这是因为A[i]不与B[j]连线,但是A[i]可能可以与B[j]之前所有点的连线,同理B[j]也是一样的。

代码如下:

  1. class Solution(object):
  2. def maxUncrossedLines(self, A, B):
  3. """
  4. :type A: List[int]
  5. :type B: List[int]
  6. :rtype: int
  7. """
  8. dp = []
  9. for i in range(len(A)):
  10. dp.append([0] * len(B))
  11. for i in range(len(A)):
  12. for j in range(len(B)):
  13. if A[i] == B[j]:
  14. dp[i][j] = max(dp[i][j],1)
  15. if i - 1 >= 0 and j - 1 >= 0 :
  16. dp[i][j] = max(dp[i][j],dp[i-1][j-1]+1)
  17. else:
  18. if i - 1 >= 0 and j - 1 >= 0:
  19. dp[i][j] = max(dp[i][j],dp[i-1][j-1])
  20. if j - 1 >= 0:
  21. dp[i][j] = max(dp[i][j],dp[i][j-1])
  22. if i - 1 >= 0:
  23. dp[i][j] = max(dp[i][j],dp[i-1][j])
  24. return dp[-1][-1]

转载于:https://www.cnblogs.com/seyjs/p/10901340.html

发表评论

表情:
评论列表 (有 0 条评论,264人围观)

还没有评论,来说两句吧...

相关阅读

    相关 PAT乙级1035

    1035 插入与归并 (25 分) 根据维基百科的定义: 插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序