darknet-训练自己的yolov3模型

川长思鸟来 2022-02-19 07:59 514阅读 0赞

目录

  • Yolo v3的使用方法

    • 安装darknet
    • 训练Pascal VOC格式的数据

      • 修改cfg文件中的voc.data
      • 修改VOC.names
      • 下载预训练卷积层权重
      • 修改cfg/yolov3-voc.cfg
    • 训练自己的模型
    • 测试Yolo模型

      • 测试单张图片:
    • 生成预测结果
    • 采用第三方compute_mAP
    • Reference

Yolo v3的使用方法

参考自@zhaonan

安装darknet

  • 下载库文件

    git clone https://github.com/pjreddie/darknet
    cd darknet

  • 修改Makefile

    GPU=1 #0或1
    CUDNN=1 #0或1
    OPENCV=0 #0或1
    OPENMP=0
    DEBUG=0

  • 编译

    make

  • 下载预训练模型

    wget https://pjreddie.com/media/files/yolov3.weights

  • 用预训练模型进行简单的测试

    ./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

训练Pascal VOC格式的数据

  • 生成Labels,因为darknet不需要xml文件,需要.txt文件(格式: )

用voc_label.py(位于./scripts)cat voc_label.py 共修改四处

  1. import xml.etree.ElementTree as ET
  2. import pickle
  3. import os
  4. from os import listdir, getcwd
  5. from os.path import join
  6. sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')] #替换为自己的数据集
  7. classes = ["head", "eye", "nose"] #修改为自己的类别
  8. def convert(size, box):
  9. dw = 1./(size[0])
  10. dh = 1./(size[1])
  11. x = (box[0] + box[1])/2.0 - 1
  12. y = (box[2] + box[3])/2.0 - 1
  13. w = box[1] - box[0]
  14. h = box[3] - box[2]
  15. x = x*dw
  16. w = w*dw
  17. y = y*dh
  18. h = h*dh
  19. return (x,y,w,h)
  20. def convert_annotation(year, image_id):
  21. in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id)) #将数据集放于当前目录下
  22. out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
  23. tree=ET.parse(in_file)
  24. root = tree.getroot()
  25. size = root.find('size')
  26. w = int(size.find('width').text)
  27. h = int(size.find('height').text)
  28. for obj in root.iter('object'):
  29. difficult = obj.find('difficult').text
  30. cls = obj.find('name').text
  31. if cls not in classes or int(difficult)==1:
  32. continue
  33. cls_id = classes.index(cls)
  34. xmlbox = obj.find('bndbox')
  35. b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
  36. bb = convert((w,h), b)
  37. out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
  38. wd = getcwd()
  39. for year, image_set in sets:
  40. if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
  41. os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
  42. image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
  43. list_file = open('%s_%s.txt'%(year, image_set), 'w')
  44. for image_id in image_ids:
  45. list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
  46. convert_annotation(year, image_id)
  47. list_file.close()
  48. os.system("cat 2007_train.txt 2007_val.txt > train.txt") #修改为自己的数据集用作训练
  49. wget https://pjreddie.com/media/files/voc_label.py
  50. python voc_label.py

VOCdevkit/VOC2007/labels/中:

  1. learner@learner-pc:~/darknet/scripts$ ls
  2. 2007_test.txt #0 dice_label.sh imagenet_label.sh VOCdevkit_original
  3. 2007_train.txt #1 gen_tactic.sh train.txt #3 voc_label.py
  4. 2007_val.txt #2 get_coco_dataset.sh VOCdevkit

这时darknet需要一个txt文件,其中包含了所有的图片

  1. cat 2007_train.txt 2007_val.txt 2012_*.txt > train.txt

修改cfg文件中的voc.data

  1. classes= 3 #修改为自己的类别数
  2. train = /home/learner/darknet/data/voc/train.txt #修改为自己的路径 or /home/learner/darknet/scripts/2007_test.txt
  3. valid = /home/learner/darknet/data/voc/2007_test.txt #修改为自己的路径 or /home/learner/darknet/scripts/2007_test.txt
  4. names = /home/learner/darknet/data/voc.names #修改见voc.names
  5. backup = /home/learner/darknet/backup #修改为自己的路径,输出的权重信息将存储其内

修改VOC.names

  1. head #自己需要探测的类别,一行一个
  2. eye
  3. nose

下载预训练卷积层权重

  1. wget https://pjreddie.com/media/files/darknet53.conv.74

修改cfg/yolov3-voc.cfg

  1. [net]
  2. # Testing
  3. batch=64
  4. subdivisions=32 #每批训练的个数=batch/subvisions,根据自己GPU显存进行修改,显存不够改大一些
  5. # Training
  6. # batch=64
  7. # subdivisions=16
  8. width=416
  9. height=416
  10. channels=3
  11. momentum=0.9
  12. decay=0.0005
  13. angle=0
  14. saturation = 1.5
  15. exposure = 1.5
  16. hue=.1
  17. learning_rate=0.001
  18. burn_in=1000
  19. max_batches = 50200 #训练步数
  20. policy=steps
  21. steps=40000,45000 #开始衰减的步数
  22. scales=.1,.1
  23. [convolutional]
  24. batch_normalize=1
  25. filters=32
  26. size=3
  27. stride=1
  28. pad=1
  29. activation=leaky
  30. .....
  31. [convolutional]
  32. size=1
  33. stride=1
  34. pad=1
  35. filters=24 #filters = 3 * ( classes + 5 ) here,filters=3*(3+5)
  36. activation=linear
  37. [yolo]
  38. mask = 6,7,8
  39. anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
  40. classes=3 #修改为自己的类别数
  41. num=9
  42. jitter=.3
  43. ignore_thresh = .5
  44. truth_thresh = 1
  45. random=1
  46. [route]
  47. layers = -4
  48. [convolutional]
  49. batch_normalize=1
  50. filters=256
  51. size=1
  52. stride=1
  53. pad=1
  54. activation=leaky
  55. [upsample]
  56. stride=2
  57. [route]
  58. layers = -1, 61
  59. [convolutional]
  60. batch_normalize=1
  61. filters=256
  62. size=1
  63. stride=1
  64. pad=1
  65. activation=leaky
  66. [convolutional]
  67. batch_normalize=1
  68. size=3
  69. stride=1
  70. pad=1
  71. filters=512
  72. activation=leaky
  73. [convolutional]
  74. batch_normalize=1
  75. filters=256
  76. size=1
  77. stride=1
  78. pad=1
  79. activation=leaky
  80. [convolutional]
  81. batch_normalize=1
  82. size=3
  83. stride=1
  84. pad=1
  85. filters=512
  86. activation=leaky
  87. [convolutional]
  88. batch_normalize=1
  89. filters=256
  90. size=1
  91. stride=1
  92. pad=1
  93. activation=leaky
  94. [convolutional]
  95. batch_normalize=1
  96. size=3
  97. stride=1
  98. pad=1
  99. filters=512
  100. activation=leaky
  101. [convolutional]
  102. size=1
  103. stride=1
  104. pad=1
  105. filters=24 #filters = 3 * ( classes + 5 ) here,filters=3*(3+5)
  106. activation=linear
  107. [yolo]
  108. mask = 3,4,5
  109. anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
  110. classes=3 #修改为自己的类别数
  111. num=9
  112. jitter=.3
  113. ignore_thresh = .5
  114. truth_thresh = 1
  115. random=1
  116. [route]
  117. layers = -4
  118. [convolutional]
  119. batch_normalize=1
  120. filters=128
  121. size=1
  122. stride=1
  123. pad=1
  124. activation=leaky
  125. [upsample]
  126. stride=2
  127. [route]
  128. layers = -1, 36
  129. [convolutional]
  130. batch_normalize=1
  131. filters=128
  132. size=1
  133. stride=1
  134. pad=1
  135. activation=leaky
  136. [convolutional]
  137. batch_normalize=1
  138. size=3
  139. stride=1
  140. pad=1
  141. filters=256
  142. activation=leaky
  143. [convolutional]
  144. batch_normalize=1
  145. filters=128
  146. size=1
  147. stride=1
  148. pad=1
  149. activation=leaky
  150. [convolutional]
  151. batch_normalize=1
  152. size=3
  153. stride=1
  154. pad=1
  155. filters=256
  156. activation=leaky
  157. [convolutional]
  158. batch_normalize=1
  159. filters=128
  160. size=1
  161. stride=1
  162. pad=1
  163. activation=leaky
  164. [convolutional]
  165. batch_normalize=1
  166. size=3
  167. stride=1
  168. pad=1
  169. filters=256
  170. activation=leaky
  171. [convolutional]
  172. size=1
  173. stride=1
  174. pad=1
  175. filters=24 #filters = 3 * ( classes + 5 ) here,filters=3*(3+5)
  176. activation=linear
  177. [yolo]
  178. mask = 0,1,2
  179. anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
  180. classes=3 #修改为自己的类别数
  181. num=9
  182. jitter=.3
  183. ignore_thresh = .5
  184. truth_thresh = 1
  185. random=1

训练自己的模型

1 单GPU训练:./darknet -i <gpu_id> detector train <data_cfg> <train_cfg> <weights>

  1. ./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74

2 多GPU训练,格式为0,1,2,3./darknet detector train <data_cfg> <model_cfg> <weights> -gpus <gpu_list>

  1. ./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74 -gpus 0,1,2,3

测试Yolo模型

测试单张图片:

  • 测试单张图片,需要编译时有OpenCV支持:./darknet detector test <data_cfg> <test_cfg> <weights> <image_file> #本次测试无opencv支持
  • <test_cfg>文件中batchsubdivisions两项必须为1。
  • 测试时还可以用-thresh-hier选项指定对应参数。
  • ./darknet detector test cfg/voc.data cfg/yolov3-voc.cfg backup/yolov3-voc_20000.weights Eminem.jpg

    批量测试图片

    • yolov3-voc.cfg(cfg文件夹下)文件中batchsubdivisions两项必须为1。
    • 在detector.c中增加头文件:

      1. #include <unistd.h> /* Many POSIX functions (but not all, by a large margin) */
      2. #include <fcntl.h> /* open(), creat() - and fcntl() */
  • 在前面添加GetFilename(char p)函数

    1. #include "darknet.h"
    2. #include <sys/stat.h> //需增加的头文件
    3. #include<stdio.h>
    4. #include<time.h>
    5. #include<sys/types.h> //需增加的头文件
    6. static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
    7. char *GetFilename(char *p)
    8. {
    9. static char name[30]={""};
    10. char *q = strrchr(p,'/') + 1;
    11. strncpy(name,q,20);
    12. return name;
    13. }
  • 用下面代码替换detector.c文件(example文件夹下)的void test_detector函数(注意有3处要改成自己的路径)

    void test_detector(char datacfg, char cfgfile, char weightfile, char filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
    {

    1. list *options = read_data_cfg(datacfg);
    2. char *name_list = option_find_str(options, "names", "data/names.list");
    3. char **names = get_labels(name_list);
    4. image **alphabet = load_alphabet();
    5. network *net = load_network(cfgfile, weightfile, 0);
    6. set_batch_network(net, 1);
    7. srand(2222222);
    8. double time;
    9. char buff[256];
    10. char *input = buff;
    11. float nms=.45;
    12. int i=0;
    13. while(1){
    14. if(filename){
    15. strncpy(input, filename, 256);
    16. image im = load_image_color(input,0,0);
    17. image sized = letterbox_image(im, net->w, net->h);
    18. //image sized = resize_image(im, net->w, net->h);
    19. //image sized2 = resize_max(im, net->w);
    20. //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h);
    21. //resize_network(net, sized.w, sized.h);
    22. layer l = net->layers[net->n-1];
  1. float *X = sized.data;
  2. time=what_time_is_it_now();
  3. network_predict(net, X);
  4. printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);
  5. int nboxes = 0;
  6. detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
  7. //printf("%d\n", nboxes);
  8. //if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
  9. if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
  10. draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
  11. free_detections(dets, nboxes);
  12. if(outfile)
  13. {
  14. save_image(im, outfile);
  15. }
  16. else{
  17. save_image(im, "predictions");
  18. #ifdef OPENCV
  19. cvNamedWindow("predictions", CV_WINDOW_NORMAL);
  20. if(fullscreen){
  21. cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
  22. }
  23. show_image(im, "predictions",0);
  24. cvWaitKey(0);
  25. cvDestroyAllWindows();
  26. #endif
  27. }
  28. free_image(im);
  29. free_image(sized);
  30. if (filename) break;
  31. }
  32. else {
  33. printf("Enter Image Path: ");
  34. fflush(stdout);
  35. input = fgets(input, 256, stdin);
  36. if(!input) return;
  37. strtok(input, "\n");
  38. list *plist = get_paths(input);
  39. char **paths = (char **)list_to_array(plist);
  40. printf("Start Testing!\n");
  41. int m = plist->size;
  42. if(access("/home/learner/darknet/data/outv3tiny_dpj",0)==-1)//"/home/learner/darknet/data"修改成自己的路径
  43. {
  44. if (mkdir("/home/learner/darknet/data/outv3tiny_dpj",0777))//"/home/learner/darknet/data"修改成自己的路径
  45. {
  46. printf("creat file bag failed!!!");
  47. }
  48. }
  49. for(i = 0; i < m; ++i){
  50. char *path = paths[i];
  51. image im = load_image_color(path,0,0);
  52. image sized = letterbox_image(im, net->w, net->h);
  53. //image sized = resize_image(im, net->w, net->h);
  54. //image sized2 = resize_max(im, net->w);
  55. //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h);
  56. //resize_network(net, sized.w, sized.h);
  57. layer l = net->layers[net->n-1];
  58. float *X = sized.data;
  59. time=what_time_is_it_now();
  60. network_predict(net, X);
  61. printf("Try Very Hard:");
  62. printf("%s: Predicted in %f seconds.\n", path, what_time_is_it_now()-time);
  63. int nboxes = 0;
  64. detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
  65. //printf("%d\n", nboxes);
  66. //if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
  67. if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
  68. draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
  69. free_detections(dets, nboxes);
  70. if(outfile){
  71. save_image(im, outfile);
  72. }
  73. else{
  74. char b[2048];
  75. sprintf(b,"/home/learner/darknet/data/outv3tiny_dpj/%s",GetFilename(path));//"/home/leaner/darknet/data"修改成自己的路径
  76. save_image(im, b);
  77. printf("save %s successfully!\n",GetFilename(path));
  78. /*
  79. #ifdef OPENCV
  80. //cvNamedWindow("predictions", CV_WINDOW_NORMAL);
  81. if(fullscreen){
  82. cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
  83. }
  84. //show_image(im, "predictions");
  85. //cvWaitKey(0);
  86. //cvDestroyAllWindows();
  87. #endif*/
  88. }
  89. free_image(im);
  90. free_image(sized);
  91. if (filename) break;
  92. }
  93. }
  94. }
  95. }
  • 重新进行编译

    make clean
    make

  • 开始批量测试

    ./darknet detector test cfg/voc.data cfg/yolov3-voc.cfg backup/yolov3-voc_20000.weights

  • 输入Image Path(所有的测试文件的路径,可以复制voc.data中valid后边的路径):

    /home/learner/darknet/data/voc/2007_test.txt # 完整路径

  • 结果都保存在./data/out文件夹下

生成预测结果

生成预测结果

  • ./darknet detector valid <data_cfg> <test_cfg> <weights> <out_file>
  • yolov3-voc.cfg(cfg文件夹下)文件中batchsubdivisions两项必须为1。
  • 结果生成在<data_cfg>results指定的目录下以<out_file>开头的若干文件中,若<data_cfg>没有指定results,那么默认为<darknet_root>/results
  • 执行语句如下:在终端只返回用时,在./results/comp4_det_test_[类名].txt里保存测试结果

    ./darknet detector valid cfg/voc.data cfg/yolov3-voc.cfg backup/yolov3-voc_20000.weights

采用第三方compute_mAP

下载第三方库:

  1. git clone https://github.com/LianjiLi/yolo-compute-map.git

进行如下修改:

  • 修改darknet/examples/detector.c中validate_detector()

    1. char *valid_images = option_find_str(options, "valid", "./data/2007_test.txt");//改成自己的测试文件路径
    2. if(!outfile) outfile = "comp4_det_test_";
    3. fps = calloc(classes, sizeof(FILE *));
    4. for(j = 0; j < classes; ++j){
    5. snprintf(buff, 1024, "%s/%s.txt", prefix, names[j]);//删除outfile参数以及对应的%s
    6. fps[j] = fopen(buff, "w");
  • 重新编译

    1. make clean
    2. make
  • 运行valid

    1. darknet文件夹下运行./darknet detector valid cfg/voc.data cfg/yolov3-tiny.cfg backup/yolov3-tiny_164000.weights(改为自己的模型路径)
  • 在本文件夹下运行python compute_mAP.py
  • 说明:compute_mAP.py中的test.txt文件内容只有文件名字,不带绝对路径,不带后缀

Reference

YOLOv3目标检测总结

官方网站

思路整理自@zhaonan

代码改变世界

分类: 深度学习 专栏

标签: 经验, yolov3, 配置, map, test

好文要顶 关注我 收藏该文 icon_weibo_24.png wechat.png

20170903155022.png

pprp
关注 - 69
粉丝 - 21

+加关注

1

0

« 上一篇:CycleGAN 配置及其实现
» 下一篇:(转载)YOLO配置文件理解

posted @ 2018-08-23 18:22 pprp 阅读(7246) 评论(0) 编辑 收藏

发表评论

表情:
评论列表 (有 0 条评论,514人围观)

还没有评论,来说两句吧...

相关阅读