发表评论取消回复
相关阅读
相关 无监督-主题模型(TM)/隐语义模型(LFM)(四):LDA(隐狄利克雷分布)【 数据(似然)(多项分布)+先验分布(狄雷分布)-> 后验分布(狄雷分布),后验分布作为下一轮的先验分布】【广泛使用】
一、LDA简介 1、概述01 LDA(Latent Dirichlet Allocation)模型是一种引入全概率模型的文本主题表示方法,其核心是:根据文本主题分布
相关 L1与L2正则化
0 公式 定义 L L L为loss L1正则 m i n L + C ⋅ ∥ w ∥ 1 min L + C · \\left \\|w \\right \\|\
相关 beta分布及共轭Bernoulli分布-先验、后验、预测分布
beta分布介绍 如下为beta分布的形式,其分布有两个参数, α和β。其分布形式如下 ![这里写图片描述][20161123154914329]
相关 L3-005. 垃圾箱分布
L3-005. 垃圾箱分布 [题目链接][Link 1] 大家倒垃圾的时候,都希望垃圾箱距离自己比较近,但是谁都不愿意守着垃圾箱住。所以垃圾箱的位置
相关 什么是联合概率分布?
联合概率分布简称联合分布,是两个及以上随机变量组成的随机向量的概率分布。根据随机变量的不同,联合概率分布的表示形式也不同。对于离散型随机变量,联合概率分布可以以列表的形式表示,
相关 正则化,L1正则和L2正则
问题描述 监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时
相关 L1正则化与L2正则化的区别
摘要 `正则化`的本质是在`Cost Function`中添加的`p-范数`。本文从`正则化`的本质`p-范数`入手,解释了`L1正则化`和`L2正则化`的区别。 正
相关 L1和L2正则化
什么是正则化? 正则化就是在损失函数后加上一个正则化项(惩罚项),其实就是常说的结构风险最小化策略,即经验风险(损失函数)加上正则化。一般模型越复杂,正则化值越大。 常
相关 理解:为什么L1正则先验分布是Laplace分布,L2正则先验分布是Gaussian分布
原址 [https://blog.csdn.net/m0\_38045485/article/details/82147817][https_blog.csdn.net_m0_
还没有评论,来说两句吧...