TypeError: can‘t convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory fi

迈不过友情╰ 2022-05-08 02:40 256阅读 0赞

运行程序如下:

  1. import numpy as np
  2. import torch
  3. from torch import nn
  4. from torch.autograd import Variable
  5. import matplotlib.pyplot as plt
  6. class LinearRegression(nn.Module):
  7. def __init__(self):
  8. super(LinearRegression,self).__init__()
  9. self.linear = nn.Linear(1,1)
  10. def forward(self, x):
  11. out = self.linear(x)
  12. return out
  13. x_train = np.array([[3.3],[4.4],[5.5],[6.710],[6.93],[4.168],[9.779],[6.182],[7.59],[2.167],[7.042],[10.791],[5.313],[7.997],[3.1]],dtype=np.float32)
  14. y_train = np.array([[1.7],[2.76],[2.09],[3.19],[1.694],[1.573],[3.366],[2.596],[2.53],[1.221],[2.827],[3.465],[1.65],[2.904],[1.3]],dtype=np.float32)
  15. x_train = torch.from_numpy(x_train)
  16. y_train = torch.from_numpy(y_train)
  17. num_epochs = 1000
  18. if torch.cuda.is_available():
  19. print("GPU1")
  20. model = LinearRegression().cuda()
  21. else:
  22. print("CPU1")
  23. model = LinearRegression()
  24. criterion = nn.MSELoss()
  25. optimizer = torch.optim.SGD(model.parameters(),lr=1e-3)
  26. for epoch in range(num_epochs):
  27. if torch.cuda.is_available():
  28. print('GPU2')
  29. inputs = Variable(x_train).cuda()
  30. target = Variable(y_train).cuda()
  31. else:
  32. print("CPU2")
  33. inputs = Variable(x_train)
  34. target = Variable(y_train)
  35. # forward
  36. out = model(inputs)
  37. loss = criterion(out,target)
  38. # backward
  39. optimizer.zero_grad() # 梯度归零
  40. loss.backward() # 反向传播
  41. optimizer.step() # 更新参数
  42. # if (epoch+1) % 20 ==0:
  43. # print('Epoch[{}/{}], loss:{:,6f}'.format(epoch+1,num_epochs,loss.data[0]))
  44. model.eval()
  45. predict = model(Variable(x_train.cuda()))
  46. predict = predict.data.numpy()
  47. plt.plot(x_train.numpy(),y_train.numpy(),'ro',label='Original data')
  48. plt.plot(x_train.numpy(),predict,label='Fitting Line')
  49. plt.show()

这行报错:predict = predict.data.numpy()

  1. TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

意思是:如果想把CUDA tensor格式的数据改成numpy时,需要先将其转换成cpu float-tensor随后再转到numpy格式。 numpy不能读取CUDA tensor 需要将它转化为 CPU tensor
predict.data.numpy() 改为predict.data.cpu().numpy()即可

发表评论

表情:
评论列表 (有 0 条评论,256人围观)

还没有评论,来说两句吧...

相关阅读