发表评论取消回复
相关阅读
相关 分类模型-评估指标(2):ROC曲线、 AUC值(ROC曲线下的面积)【只能用于二分类模型的评价】【不受类别数量不平衡的影响;不受阈值取值的影响】【AUC的计算方式:统计所有正负样本对中的正序对】
评价二值分类器的指标很多,比如precision、recall、F1 score、P-R曲线等。但这些指标或多或少只能反映模型在某一方面的性能。相比而言,ROC曲线则有很多优点
相关 多分类的样本不均衡问题
利用深度学习做多分类在工业或是在科研环境中都是常见的任务。在科研环境下,无论是NLP、CV或是TTS系列任务,数据都是丰富且干净的。而在现实的工业环境中,数据问题常常成为困扰从
相关 Python解决数据样本类别分布不均衡问题
所谓不平衡指的是:不同类别的样本数量差异非常大。 数据规模上可以分为大数据分布不均衡和小数据分布不均衡。大数据分布不均衡:例如拥有1000万条记录的数据集中,其中占比50万条
相关 matlab绘制roc曲线,手把手画ROC曲线
假设现在有一个二分类问题,先引入两个概念:真正例率(TPR):正例中预测为正例的比例 假正例率(FPR):反例中预测为正例的比例 再假设样本数为6,现在有一个分类器1,它对
相关 样本不均衡及其解决办法
1 什么是类别不均衡 类别不平衡(class-imbalance),也叫数据倾斜,数据不平衡,是指分类任务中不同类别的训练样例数目差别很大的情况。 在现实的分类学习任务
相关 为什么ROC曲线不受样本不均衡问题的影响
在对分类模型的评价标准中,除了常用的错误率,精确率,召回率和F1度量外,还有两类曲线:ROC曲线和PR曲线,它们都是基于混淆矩阵,在不同分类阈值下两个重要量的关系曲线。 在二
相关 正负样本不均衡的解决办法
机器学习中,最重要的一个过程就是模型训练,但是在做模型训练之前需要对数据进行预处理也就是常见的数据清洗和特征工程。 数据清洗过程中,比较重要的一步就是查看正负样本是否均衡。
相关 ROC、AUC曲线
一 roc曲线 1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。 横轴:
相关 Roc曲线、AUC
1 概述 AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准。这样的标准其实有很多,例如:大约10年前在machine lear
还没有评论,来说两句吧...