Python金融大数据分析——第16章 金融模型的模拟 笔记 野性酷女 2022-05-20 08:18 369阅读 0赞 * 第16章 金融模型的模拟 * 16.1 随机数生成 * 16.2 泛型模拟类 * 16.3 几何布朗运动 * 16.3.1 模拟类 * 16.3.2 用例 * 16.4 跳跃扩散 * 16.4.1 模拟类 * 16.4.2 用例 * 16.5 平方根扩散 * 16.5.1 模拟类 * 16.5.2 用例 # 第16章 金融模型的模拟 # 本章会用到 金融数据分析库 DX 下载地址:[https://github.com/yhilpisch/dx][https_github.com_yhilpisch_dx] 找到setup.py,手动安装:python setup.py install 我们要用到的很多模型这个库中都有 参考:[Python金融大数据分析——第10章 推断统计学][Python_10_] ## 16.1 随机数生成 ## 生成标准正态分布随机数的函数 # 生成标准正态分布随机数的函数 import numpy as np def sn_random_numbers(shape, antithetic=True, moment_matching=True, fixed_seed=False): """ Returns an array of shape shape with (pseudo) random numbers that are standard normally distributed. :param shape: tuple(0,n,m) generation of array with shape(0,n,m) :param antithetic: Boolean generation of antithetic variates :param moment_matching: Boolean matching of first and second moments :param fixed_seed: Boolean flag to fix and seed :return: ran:(0,n,m) array of (pseudo) random numbers """ if fixed_seed: np.random.seed(1000) if antithetic: ran = np.random.standard_normal((shape[0], shape[1], shape[2] / 2)) ran = np.concatenate((ran, -ran), axis=2) else: ran = np.random.standard_normal(shape) if moment_matching: ran = ran - np.mean(ran) ran = ran / np.std(ran) if shape[0] == 1: return ran[0] else: return ran snrn = sn_random_numbers((2, 2, 2), antithetic=False, moment_matching=False, fixed_seed=True) snrn # array([[[-0.8044583 , 0.32093155], # [-0.02548288, 0.64432383]], # [[-0.30079667, 0.38947455], # [-0.1074373 , -0.47998308]]]) snrn_mm = sn_random_numbers((2, 3, 2), antithetic=False, moment_matching=True, fixed_seed=True) snrn_mm # array([[[-1.47414161, 0.67072537], # [ 0.01049828, 1.28707482], # [-0.51421897, 0.80136066]], # [[-0.14569767, -0.85572818], # [ 1.19313679, -0.82653845], # [ 1.3308292 , -1.47730025]]]) snrn_mm.mean() # 3.700743415417188e-17 snrn_mm.std() # 1.0 ## 16.2 泛型模拟类 ## 面向对象建模允许属性和方法的继承。这是我们在构建模拟类时想要利用的:从一个泛型模拟类开始,它包含所有其他模拟类共享的属性和方法。 首先要注意的是, 我们实例化任何模拟类的一个对象都 “ 只” 提供3个属性: name:用作模型模拟对象名称的字符科才象 mar\_env : maket\_environment 类的一个实例 corr:表示对象是否相关的一个标志(布尔型) 这再次说明了市场环境的作用:在一步中提供模拟和估值所需的所有数据和对象。泛型类的方法如下: generate\_time\_grid: 这个方法生成模拟所用的相关日期的 “时间网格”。这个任务对于每个模拟类都相同。 get\_instument\_values: 每个模拟类都必须返回包含模拟金融工具价值的 ndarray 对象(例如模拟的股票价格, 商品价格, 波动率)。 泛型金融模型模拟类 # 泛型金融模型模拟类 import numpy as np import pandas as pd class simulation_class(object): """ Providing base methods for simulation classes. """ def __init__(self, name, mar_env, corr): """ :param name: string name of the object :param mar_env: instance of market_environment market environment data for simulation :param corr: Boolean True of correlated with other model object """ try: self.name = name self.pricing_data = mar_env.pricing_date self.initial_value = mar_env.get_constant('initial_value') self.volatility = mar_env.get_constant('volatility') self.final_date = mar_env.get_constant('final_date') self.currency = mar_env.get_constant('currency') self.frequency = mar_env.get_constant('frequency') self.paths = mar_env.get_constant('paths') self.discount_curve = mar_env.get_curve('discount_curve') try: # if time_grid in mar_env take this # (for portfolio valuation) self.time_grid = mar_env.get_list('time_grid') except: self.time_grid = None try: # if there are special dates, then add these self.special_dates = mar_env.get_list('special_dates') except: self.special_dates = [] self.instrument_values = None self.correlated = corr if corr: # only needed in a portfolio context when # risk factors are correlated self.cholesky_matrix = mar_env.get_list('cholesky_matrix') self.rn_set = mar_env.get_list('rn_set')[self.name] self.random_numbers = mar_env.get_list('random_numbers') except: print("Error parsing market environment.") def generate_time_grid(self): start = self.pricing_data end = self.final_date # pandas date_range function # freq = e.g. 'B' for Business Day, # 'W' for Weekly, 'M'for Monthly time_grid = pd.date_range(start=start, end=end, freq=self.frequency).to_pydatetime() time_grid = list(time_grid) if start not in time_grid: time_grid.insert(0, start) # insert start date if not in list if end not in time_grid: time_grid.append(end) # insert end date if not in list if len(self.special_dates) > 0: # add all special dates time_grid.extend(self.special_dates) # delete duplicates time_grid = list(set(time_grid)) # sort list time_grid.sort() self.time_grid = np.array(time_grid) def get_instrument_values(self, fixed_seed=True): if self.instrument_values is None: # only initiate simulation if there are no instrument values self.generate_paths(fixed_seed=fixed_seed, day_count=365.) elif fixed_seed is False: # also initiate resimulation when fixed_seed is False self.generate_paths(fixed_seed=fixed_seed, day_count=365.) return self.instrument_values 所有模拟类的市场环境元素 <table> <thead> <tr> <th>元素</th> <th>类型</th> <th>强制</th> <th>描述</th> </tr> </thead> <tbody> <tr> <td>initial_value</td> <td>常量</td> <td>是</td> <td>pricing_date(定价日)时的过程初始值</td> </tr> <tr> <td>volatility</td> <td>常量</td> <td>是</td> <td>过程的波动性系数</td> </tr> <tr> <td>final_date</td> <td>常量</td> <td>是</td> <td>模拟范围</td> </tr> <tr> <td>cuπency</td> <td>常量</td> <td>是</td> <td>金融实体的货币</td> </tr> <tr> <td>fequency</td> <td>常量</td> <td>是</td> <td>日期频率,和pandas freq参数相同</td> </tr> <tr> <td>paths</td> <td>常量</td> <td>是</td> <td>模拟路径数量</td> </tr> <tr> <td>discount_curve</td> <td>曲线</td> <td>是</td> <td>constant_short_rate 实例</td> </tr> <tr> <td>time_grid</td> <td>列表</td> <td>否</td> <td>相关日期的时间网格(在投资组合背景下)</td> </tr> <tr> <td>random_numbers</td> <td>列表</td> <td>否</td> <td>随机数数组(用于相关对象)</td> </tr> <tr> <td>cholesky_matrix</td> <td>列表</td> <td>否</td> <td>Cholesky 矩阵(用于相关对象)</td> </tr> <tr> <td>rn_set</td> <td>列表</td> <td>否</td> <td>包含指向相关随机数值指针的字典对象</td> </tr> </tbody> </table> ## 16.3 几何布朗运动 ## 公式 几何布朗运动的随机微分方程 dSt=rStdt\+σStdZt d S t = r S t d t + σ S t d Z t 下面公式提供了上述微分方程用于模拟目的的欧拉离散化格式。我们工作于离散时间市场模型中,使用有限相关日期集合 0<t1<t2<...<T 0 < t 1 < t 2 < . . . < T 。 公式 模拟几何布朗运动的微分方程 Stm\+1=Stmexp((r−12σ2)(tm\+1−tm)\+σtm\+1−tm−−−−−−−−√Zt)0≤tm≤tm\+1≤T S t m + 1 = S t m e x p ( ( r − 1 2 σ 2 ) ( t m + 1 − t m ) + σ t m + 1 − t m Z t ) 0 ≤ t m ≤ t m + 1 ≤ T ### 16.3.1 模拟类 ### import numpy as np class geometric_brownian_motion(simulation_class): """ Class to generate simulated paths based on the Black_Scholes-Merton geometric Brownian motion model. """ def __init__(self, name, mar_env, corr=False): super(geometric_brownian_motion, self).__init__(name, mar_env, corr) def update(self, initial_value=None, volatility=None, final_date=None): if initial_value is not None: self.initial_value = initial_value if volatility is not None: self.volatility = volatility if final_date is not None: self.final_date = final_date self.instrument_values = None def generate_paths(self, fixed_seed=False, day_count=365.): if self.time_grid is None: self.generate_time_grid() M = len(self.time_grid) I = self.paths paths = np.zeros((M, I)) paths[0] = self.initial_value if not self.correlated: rand = sn_random_numbers((1, M, I), fixed_seed=fixed_seed) else: rand = self.random_numbers short_rate = self.discount_curve.short_rate for t in range(1, len(self.time_grid)): if not self.correlated: ran = rand[t] else: ran = np.dot(self.cholesky_matrix, rand[:, t, :]) rand = ran[self.rn_set] dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count paths[t] = paths[t - 1] * np.exp((short_rate - 0.5 * self.volatility ** 2) * dt + self.volatility * np.sqrt(dt) * ran) self.instrument_values = paths ### 16.3.2 用例 ### from dx import * me_gbm = market_environment('me_gbm', dt.datetime(2018, 1, 1)) me_gbm.add_constant('initial_value', 36.) me_gbm.add_constant('volatility', 0.2) me_gbm.add_constant('final_date', dt.datetime(2018, 12, 31)) me_gbm.add_constant('currency', 'EUR') me_gbm.add_constant('frequency', 'M') me_gbm.add_constant('paths', 10000) csr = constant_short_rate('csr', 0.05) me_gbm.add_curve('discount_curve', csr) gbm = geometric_brownian_motion('gbm', me_gbm) gbm.generate_time_grid() gbm.time_grid # array([datetime.datetime(2018, 1, 1, 0, 0), # datetime.datetime(2018, 1, 31, 0, 0), # datetime.datetime(2018, 2, 28, 0, 0), # datetime.datetime(2018, 3, 31, 0, 0), # datetime.datetime(2018, 4, 30, 0, 0), # datetime.datetime(2018, 5, 31, 0, 0), # datetime.datetime(2018, 6, 30, 0, 0), # datetime.datetime(2018, 7, 31, 0, 0), # datetime.datetime(2018, 8, 31, 0, 0), # datetime.datetime(2018, 9, 30, 0, 0), # datetime.datetime(2018, 10, 31, 0, 0), # datetime.datetime(2018, 11, 30, 0, 0), # datetime.datetime(2018, 12, 31, 0, 0)], dtype=object) %time paths_1 = gbm.get_instrument_values() # Wall time: 8.99 ms paths_1 # array([[36. , 36. , 36. , ..., 36. , # 36. , 36. ], # [37.37221481, 38.08890977, 34.37156575, ..., 36.22258915, # 35.05503522, 39.63544014], # [39.45866146, 42.18817025, 32.38579992, ..., 34.80319951, # 33.60600939, 37.62733874], # ..., # [40.15717404, 33.16701733, 23.32556112, ..., 37.5619937 , # 29.89282508, 30.2202427 ], # [42.0974104 , 36.59006321, 21.70771374, ..., 35.70950512, # 30.64670854, 30.45901309], # [43.33170027, 37.42993532, 23.8840177 , ..., 35.92624556, # 27.87720187, 28.77424561]]) gbm.update(volatility=0.5) %time paths_2 = gbm.get_instrument_values() # Wall time: 8 ms # GBM 模拟类中的模拟路程 import matplotlib.pyplot as plt plt.figure(figsize=(8, 6)) p1 = plt.plot(gbm.time_grid, paths_1[:, :10], 'b') p2 = plt.plot(gbm.time_grid, paths_2[:, :10], 'r-.') plt.grid(True) l1 = plt.legend([p1[0], p2[0]], ['low volatility', 'high volatility'], loc=2) plt.gca().add_artist(l1) plt.xticks(rotation=30) GBM 模拟类中的模拟路程 ![GBM 模拟类中的模拟路程][GBM] ## 16.4 跳跃扩散 ## 公式 Meron跳跃扩散模型的随分方程 dSt=(r−rJ)Stdt\+σStdZt\+JtStdNt d S t = ( r − r J ) S t d t + σ S t d Z t + J t S t d N t St S t :t日的指数水平 r:恒定无风险短期利率 rJ≡λ⋅(eμJ\+δ2/2−1) r J ≡ λ ⋅ ( e μ J + δ 2 / 2 − 1 ) 维持风险中立性的跳跃漂移校正 σ σ :S的恒定波动率 Zt Z t :标准布朗运动 Jt J t :t日呈……分布的跳跃 log(1\+Jt)≈N(log(1\+μJ)−δ22,δ2) l o g ( 1 + J t ) ≈ N ( l o g ( 1 + μ J ) − δ 2 2 , δ 2 ) N是标准正态随机变量的累积分布函数 Nt N t :密度为 λ λ 的泊松分布 下面公式介绍一种用于跳跃扩散的欧拉离散化公式,其中znt z t n 呈标准正态分布,yt呈密度为λ的泊松分布。 公式 Meron跳跃扩散模型的欧拉离散化 St=St−Δt(e(r−rJ−σ2/2)Δt\+σΔt√z1t\+(eμJ\+δz2t−1)yt) S t = S t − Δ t ( e ( r − r J − σ 2 / 2 ) Δ t + σ Δ t z t 1 + ( e μ J + δ z t 2 − 1 ) y t ) ### 16.4.1 模拟类 ### # # DX Analytics # Base Classes and Model Classes for Simulation # jump_diffusion.py # class jump_diffusion(simulation_class): ''' Class to generate simulated paths based on the Merton (1976) jump diffusion model. Attributes ========== name : string name of the object mar_env : instance of market_environment market environment data for simulation corr : boolean True if correlated with other model object Methods ======= update : updates parameters generate_paths : returns Monte Carlo paths given the market environment ''' def __init__(self, name, mar_env, corr=False): super(jump_diffusion, self).__init__(name, mar_env, corr) try: self.lamb = mar_env.get_constant('lambda') self.mu = mar_env.get_constant('mu') self.delt = mar_env.get_constant('delta') except: print('Error parsing market environment.') def update(self, pricing_date=None, initial_value=None, volatility=None, lamb=None, mu=None, delta=None, final_date=None): if pricing_date is not None: self.pricing_date = pricing_date self.time_grid = None self.generate_time_grid() if initial_value is not None: self.initial_value = initial_value if volatility is not None: self.volatility = volatility if lamb is not None: self.lamb = lamb if mu is not None: self.mu = mu if delta is not None: self.delt = delta if final_date is not None: self.final_date = final_date self.instrument_values = None def generate_paths(self, fixed_seed=False, day_count=365.): if self.time_grid is None: self.generate_time_grid() # method from generic model simulation class # number of dates for time grid M = len(self.time_grid) # number of paths I = self.paths # array initialization for path simulation paths = np.zeros((M, I)) # initialize first date with initial_value paths[0] = self.initial_value if self.correlated is False: # if not correlated generate random numbers sn1 = sn_random_numbers((1, M, I), fixed_seed=fixed_seed) else: # if correlated use random number object as provided # in market environment sn1 = self.random_numbers # Standard normally distributed seudo-random numbers # for the jump component sn2 = sn_random_numbers((1, M, I), fixed_seed=fixed_seed) forward_rates = self.discount_curve.get_forward_rates( self.time_grid, self.paths, dtobjects=True)[1] rj = self.lamb * (np.exp(self.mu + 0.5 * self.delt ** 2) - 1) for t in range(1, len(self.time_grid)): # select the right time slice from the relevant # random number set if self.correlated is False: ran = sn1[t] else: # only with correlation in portfolio context ran = np.dot(self.cholesky_matrix, sn1[:, t, :]) ran = ran[self.rn_set] dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count # difference between two dates as year fraction poi = np.random.poisson(self.lamb * dt, I) # Poisson distributed pseudo-random numbers for jump component rt = (forward_rates[t - 1] + forward_rates[t]) / 2 paths[t] = paths[t - 1] * ( np.exp((rt - rj - 0.5 * self.volatility ** 2) * dt + self.volatility * np.sqrt(dt) * ran) + (np.exp(self.mu + self.delt * sn2[t]) - 1) * poi) self.instrument_values = paths jump\_diffusion 类的特殊市场环境元素 <table> <thead> <tr> <th>元素</th> <th>类型</th> <th>强制</th> <th>描述</th> </tr> </thead> <tbody> <tr> <td>lambda</td> <td>常量</td> <td>是</td> <td>跳跃密度(概率、按年)</td> </tr> <tr> <td>mu</td> <td>常量</td> <td>是</td> <td>预期跳跃规律</td> </tr> <tr> <td>delta</td> <td>常量</td> <td>是</td> <td>跳跃规律的标准差</td> </tr> </tbody> </table> ### 16.4.2 用例 ### me_jd = market_environment('me_jd', dt.datetime(2018, 1, 1)) me_jd.add_constant('lambda', 0.3) me_jd.add_constant('mu', -0.75) me_jd.add_constant('delta', 0.1) me_jd.add_environment(me_gbm) jd = jump_diffusion('jd', me_jd) %time paths_3 = jd.get_instrument_values() # Wall time: 21 ms jd.update(lamb=0.9) %time paths_4 = jd.get_instrument_values() # Wall time: 19 ms plt.figure(figsize=(8, 6)) p1 = plt.plot(gbm.time_grid, paths_3[:, :10], 'b') p2 = plt.plot(gbm.time_grid, paths_4[:, :10], 'r-.') plt.grid(True) l1 = plt.legend([p1[0], p2[0]], ['low volatility', 'high volatility'], loc=2) plt.gca().add_artist(l1) plt.xticks(rotation=30) 来自跳跃扩散模拟类的模拟路径 ![来自跳跃扩散模拟类的模拟路径][70] ## 16.5 平方根扩散 ## 公式 平方根扩散的随机微分方程 dxt=k(θ−xt)dt\+σxt−−√dZt d x t = k ( θ − x t ) d t + σ x t d Z t xt x t :日期 t 的过程水平 k : 均值回归因子 θ θ :长期过程均值 σ σ :恒定波动率参数 Z :标准布朗运动 众所周知,xt x t 的值呈卡方分布。但是,许多金融模型可以使用正态分布进行离散化和近似计算(即所谓的欧拉离散化格式)。虽然欧拉格式对几何布朗运动很准确 ,但是对于大部分其他随机过程则会产生偏差。即使有精确的格式,因为数值化或者计算的原因,使欧拉格式可能最合适。定义 s≡t−Δt s ≡ t − Δ t 和 x\+≡max(x,0) x + ≡ m a x ( x , 0 ) ,下面公式提出了一种欧拉格式。这种特殊格式在文献中通常称作完全截断。 公式 平方根扩散的欧拉离散化 x~t=x~s\+k(θ−x~\+s)Δt\+σx~\+s−−−√Δtzt−−−−√ x ~ t = x ~ s + k ( θ − x ~ s + ) Δ t + σ x ~ s + Δ t z t xt=x~\+t x t = x ~ t + ### 16.5.1 模拟类 ### # # DX Analytics # Base Classes and Model Classes for Simulation # square_root_diffusion.py # class square_root_diffusion(simulation_class): ''' Class to generate simulated paths based on the Cox-Ingersoll-Ross (1985) square-root diffusion. Attributes ========== name : string name of the object mar_env : instance of market_environment market environment data for simulation corr : boolean True if correlated with other model object Methods ======= update : updates parameters generate_paths : returns Monte Carlo paths given the market environment ''' def __init__(self, name, mar_env, corr=False): super(square_root_diffusion, self).__init__(name, mar_env, corr) try: self.kappa = mar_env.get_constant('kappa') self.theta = mar_env.get_constant('theta') except: print('Error parsing market environment.') def update(self, pricing_date=None, initial_value=None, volatility=None, kappa=None, theta=None, final_date=None): if pricing_date is not None: self.pricing_date = pricing_date self.time_grid = None self.generate_time_grid() if initial_value is not None: self.initial_value = initial_value if volatility is not None: self.volatility = volatility if kappa is not None: self.kappa = kappa if theta is not None: self.theta = theta if final_date is not None: self.final_date = final_date self.instrument_values = None def generate_paths(self, fixed_seed=True, day_count=365.): if self.time_grid is None: self.generate_time_grid() M = len(self.time_grid) I = self.paths paths = np.zeros((M, I)) paths_ = np.zeros_like(paths) paths[0] = self.initial_value paths_[0] = self.initial_value if self.correlated is False: rand = sn_random_numbers((1, M, I), fixed_seed=fixed_seed) else: rand = self.random_numbers for t in range(1, len(self.time_grid)): dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count if self.correlated is False: ran = rand[t] else: ran = np.dot(self.cholesky_matrix, rand[:, t, :]) ran = ran[self.rn_set] # full truncation Euler discretization paths_[t] = (paths_[t - 1] + self.kappa * (self.theta - np.maximum(0, paths_[t - 1])) * dt + np.sqrt(np.maximum(0, paths_[t - 1])) * self.volatility * np.sqrt(dt) * ran) paths[t] = np.maximum(0, paths_[t]) self.instrument_values = paths square\_root\_diffusion 类市场环境的特定元素 <table> <thead> <tr> <th>元素</th> <th>类型</th> <th>强制</th> <th>描述</th> </tr> </thead> <tbody> <tr> <td>kappa</td> <td>常量</td> <td>是</td> <td>均值回归因子</td> </tr> <tr> <td>theta</td> <td>常量</td> <td>是</td> <td>过程长期均值</td> </tr> </tbody> </table> ### 16.5.2 用例 ### me_srd = market_environment('me_srd', dt.datetime(2018, 1, 1)) me_srd.add_constant('initial_value', 0.25) me_srd.add_constant('volatility', 0.05) me_srd.add_constant('final_date', dt.datetime(2018,12,31)) me_srd.add_constant('currency', 'EUR') me_srd.add_constant('frequency', 'W') me_srd.add_constant('paths', 10000) me_srd.add_constant('kappa',4.0) me_srd.add_constant('theta',0.2) me_srd.add_curve('discount_curve',constant_short_rate('r',0.0)) srd=square_root_diffusion('srd',me_srd) srd_paths=srd.get_instrument_values()[:,:10] plt.figure(figsize=(8, 6)) p1 = plt.plot(srd.time_grid, srd.get_instrument_values()[:, :10]) plt.axhline(me_srd.get_constant('theta'), color='r', ls='--', lw=2.0) plt.grid(True) plt.xticks(rotation=30) 来自平方根扩融模拟类的模拟路径(虚线=长期均值 theta) ![来自平方根扩融模拟类的模拟路径][70 1] ^\_^ [https_github.com_yhilpisch_dx]: https://github.com/yhilpisch/dx [Python_10_]: https://blog.csdn.net/weixin_42018258/article/details/80902913 [GBM]: /images/20220520/daafc5c329d5485cbf449dbdc1ba2e54.png [70]: /images/20220520/40969d86cb574d51bcd7fc5e52713b0d.png [70 1]: /images/20220520/6e13ed38828546aea723070d80ef3ffe.png
相关 Python金融大数据分析——第10章 推断统计学 笔记3 第10章 推断统计学 10.4 风险测度 10.4.1 风险价值 10.4.2 信用 向右看齐/ 2022年05月21日 12:24/ 0 赞/ 271 阅读
相关 Python金融大数据分析——第10章 推断统计学 笔记1 第10章 推断统计学 10.1 随机数 10.2 模拟 10.2.1 随机变量 心已赠人/ 2022年05月21日 08:30/ 0 赞/ 254 阅读
相关 Python金融大数据分析——第9章 数学工具 笔记 第9章 数学工具 9.1 逼近法 9.1.1 回归 9.1.2 插值 ╰半橙微兮°/ 2022年05月21日 06:45/ 0 赞/ 480 阅读
相关 Python金融大数据分析——第8章 高性能的Pyhon 笔记 第8章 高性能的Python 8.1 Python范型与性能 8.2 内存布局与性能 8.3 并行计算 - 日理万妓/ 2022年05月21日 05:54/ 0 赞/ 402 阅读
相关 Python金融大数据分析——第6章 金融时间序列 笔记 第6章 金融时间序列 6.1 pandas基础 6.1.1 使用DataFrame类的第一步 我会带着你远行/ 2022年05月21日 01:14/ 0 赞/ 479 阅读
相关 Python金融大数据分析——第10章 推断统计学 笔记2 第10章 推断统计学 10.3 估值 10.3.1 欧式期权 10.3.2 美式期权 系统管理员/ 2022年05月20日 20:09/ 0 赞/ 402 阅读
相关 Python金融大数据分析——第16章 金融模型的模拟 笔记 第16章 金融模型的模拟 16.1 随机数生成 16.2 泛型模拟类 16.3 几何布朗运动 野性酷女/ 2022年05月20日 08:18/ 0 赞/ 370 阅读
相关 Python金融大数据分析——第15章 估值框架 笔记 第15章 估值框架 15.1 资产定价基本定理 15.1.1 简单示例 15.1.2 痛定思痛。/ 2022年05月20日 08:17/ 0 赞/ 640 阅读
相关 Python金融大数据分析——第13章 面向对象 笔记 第13章 面向对象和图形用户界面 13.1 面向对象 13.1.1 Python类基础知识 不念不忘少年蓝@/ 2022年05月20日 03:15/ 0 赞/ 348 阅读
相关 Python金融大数据分析——第12章 Excel集成 笔记 第12章 Excel集成 12.1 基本电子表格交互 12.1.1 生成工作簿(.xls) 淡淡的烟草味﹌/ 2022年05月20日 00:46/ 0 赞/ 259 阅读
还没有评论,来说两句吧...