1069. The Black Hole of Numbers (20)

客官°小女子只卖身不卖艺 2022-05-30 00:15 350阅读 0赞

For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 — the “black hole” of 4-digit numbers. This number is named Kaprekar Constant.

For example, start from 6767, we’ll get:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …

Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.

Input Specification:

Each input file contains one test case which gives a positive integer N in the range (0, 10000).

Output Specification:

If all the 4 digits of N are the same, print in one line the equation “N - N = 0000”. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.

Sample Input 1:

  1. 6767

Sample Output 1:

  1. 7766 - 6677 = 1089
  2. 9810 - 0189 = 9621
  3. 9621 - 1269 = 8352
  4. 8532 - 2358 = 6174

Sample Input 2:

  1. 2222

Sample Output 2:

  1. 2222 - 2222 = 0000

题目大意:

代码:

  1. #include<stdio.h>
  2. #include<algorithm>
  3. using namespace std;
  4. int main()
  5. {
  6. int i,j,n,m,k,t,num[5];
  7. scanf("%d",&n);
  8. while(true)
  9. {
  10. num[0]=n%10;
  11. n/=10;
  12. num[1]=n%10;
  13. n/=10;
  14. num[2]=n%10;
  15. n/=10;
  16. num[3]=n%10;
  17. sort(num,num+4);
  18. int Max=num[0]+num[1]*10+num[2]*100+num[3]*1000;
  19. int Min=num[0]*1000+num[1]*100+num[2]*10+num[3];
  20. n=Max-Min;
  21. printf("%04d - %04d = %04d\n",Max,Min,n);
  22. if(n==0||n==6174)
  23. break;
  24. }
  25. }

参考: 点击打开链接

发表评论

表情:
评论列表 (有 0 条评论,350人围观)

还没有评论,来说两句吧...

相关阅读

    相关 1069. 微博转发抽奖(20)

    小明PAT考了满分,高兴之余决定发起微博转发抽奖活动,从转发的网友中按顺序每隔N个人就发出一个红包。请你编写程序帮助他确定中奖名单。 输入格式: 输入第一行给出三个正整数M