在hdfs上的文本内容如下
hello world hello java
hello c
hello hadoop map reduce
以下是自己对这个过程的总结
mapreduce执行的流程 input<k1,v1> -> map -><k2,v2> -> <k2,list<v2>> ->reduce<k3,v3> ->output 具体的步骤: map输入 <0,hello world hello java> <22, hello c> <29, hello hadoop map reduce> map输出 <hello,1> <world,1> <hello,1> <java, 1> <hello,1 > <c, 1> <hello, 1> <hadoop , 1> <map, 1> <reduce, 1> 进行shuffle 对map的输出进行排序分组 shuffle处理后 <hello, <1,1,1,1>> <world, <1>> <java, <1>> <c, <1>>... reduce 接受shuffle后的kv,遍历v的列表,进行求和 结果: <hello, 4> <world,1>... output到hdfs
代码
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
/** * * map: * 将一行句子, 以空格切分 进行输出 <一个单词, 1> * @author hadoop * */
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
//String[] strs = value.toString().split("");
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
/** * reduce功能 * 接受map的数据(中间有shuffle过程) * 计数 * @author hadoop * */
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
//设置主要的工作类
job.setJarByClass(WordCount.class);
//设置输入输出路径
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//设置map和reduce类
job.setMapperClass(TokenizerMapper.class);
job.setReducerClass(IntSumReducer.class);
//设置输出k, v 格式
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//job.setCombinerClass(IntSumReducer.class);
//运行任务
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
还没有评论,来说两句吧...