hdu 1166 敌兵布阵 线段树

r囧r小猫 2022-06-08 08:12 345阅读 0赞

Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:”你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:”我知错了。。。”但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.

Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令

Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。

Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End

Sample Output
Case 1:
6
33
59

  1. //用g++交超时 ,c++就A了,怎么肥事?
  2. #include<iostream>
  3. #include<cstdio>
  4. #include<algorithm>
  5. #include<cstring>
  6. #include<string>
  7. using namespace std;
  8. #define maxn 50005
  9. int num[maxn];
  10. struct node
  11. {
  12. int value; //此节点的值
  13. int left,right; //此节点所维护区间的左右端点
  14. }tree[maxn*4];
  15. void build(int root,int left,int right)
  16. {
  17. tree[root].left = left;
  18. tree[root].right = right;
  19. if(left == right) //区间的左右端点相同,也就是到了叶子节点
  20. {
  21. tree[root].value = num[left];
  22. return ;
  23. }
  24. int mid = (left+right) / 2;
  25. build(root*2, left, mid); //继续构建左子树
  26. build(root*2+1, mid+1, right); //继续构建右子树
  27. tree[root].value = tree[root*2].value + tree[root*2+1].value;
  28. }
  29. int query(int root, int left, int right) //查询left,right区间的和
  30. {
  31. if(tree[root].left == left&&tree[root].right == right)
  32. return tree[root].value;
  33. if(right <= tree[2*root].right) //这个区间在根的左边
  34. return query(root*2, left, right);
  35. else if(left >= tree[root*2+1].left)//这个区间在根的右边
  36. return query(root*2+1, left, right);
  37. else //这个区间既在根的左边又在根的右边
  38. {
  39. int mid = (tree[root].left+tree[root].right) / 2;
  40. return query(root*2, left, mid) + query(root*2+1, mid+1, right);
  41. }
  42. }
  43. void update(int n,int val,int root) //val是要更改的值, n是它的下标
  44. {
  45. tree[root].value = tree[root].value + val; //从最上面的根节点开始更新
  46. if (tree[root].left == n && tree[root].right == n)
  47. return;
  48. if (n <= tree[root*2].right) //在左孩子维护的区间范围内
  49. update(n,val,root*2);
  50. if(n >= tree[root*2+1].left)//在右孩子维护的区间范围内
  51. update(n,val,root*2+1);
  52. }
  53. int main(){
  54. int t, kase = 1;
  55. scanf("%d", &t);
  56. while(t--){
  57. memset(tree, 0, sizeof(tree));
  58. memset(num, 0, sizeof(num));
  59. int n;
  60. scanf("%d", &n);
  61. for(int i = 1; i <= n; i++)
  62. scanf("%d", &num[i]);
  63. build(1, 1, n);
  64. string str;
  65. int a, b;
  66. printf("Case %d:\n", kase++);
  67. bool flag = 1;
  68. while(cin>>str && str != "End"){
  69. cin>>a>>b; //这个cin不能和cin>>str放在一起,注意一下
  70. if(str == "Query")
  71. printf("%d\n",query(1, a, b));
  72. else if(str == "Add")
  73. update(a, b, 1);
  74. else if(str == "Sub")
  75. update(a, - b, 1);
  76. }
  77. }
  78. return 0;
  79. }

发表评论

表情:
评论列表 (有 0 条评论,345人围观)

还没有评论,来说两句吧...

相关阅读