338. Counting Bits(计算整数二进制表示中1的位数)
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
Hint:
- You should make use of what you have produced already.
- Divide the numbers in ranges like [2-3], [4-7], [8-15] and so on. And try to generate new range from previous.
- Or does the odd/even status of the number help you in calculating the number of 1s?
题目大意:给出参数num,计算0到num一共num+1个整数的二进制表示中各有多少个‘1’,将结果以数组形式返回。要求不使用时间复杂度为O(n*sizeof(integer))的蛮力算法,空间复杂度为 O(n),且不使用相关的系统内建功能函数。
解题思路: 设结果数组为res[]。
解法一:观察下表,从i=1开始的每个区间[2^0, 2^1-1],[2^1, 2^2-1],[2^2, 2^3-1]…每个区间上的 res[i]都等于res[i-该区间长度]+1。
i 二进制表示 '1' res[i] 0 0000 0 res[0]=0
-------------
1 0001 1 res[1]=res[0]+1
-------------
2 0010 1 res[2]=res[0]+1
3 0011 2 res[3]=res[1]+1
-------------
4 0100 1 res[4]=res[0]+1
5 0101 2 res[5]=res[1]+1
6 0110 2 res[6]=res[2]+1
7 0111 3 res[7]=res[3]+1
-------------
8 1000 1 ...
9 1001 2
10 1010 2
11 1011 3
12 1100 2
13 1101 3
14 1110 3
15 1111 4
那么我们可以根据这个规律得到一种解法,代码如下:(3ms,beats 41.16%)
public int[] countBits(int num) {
int[] res = new int[num + 1];
int i = 1, j, k = 2;
res[0] = 0;
while (i <= num) {
for (j = 0; i <= num && i < k; )
res[i++] = res[j++] + 1;
k <<= 1;
}
return res;
}
解法二:观察下表,发现从i=1开始,当 i 为偶数时,res[i] = res[i/2];当 i 为奇数时,res[i] = res[i/2] + 1。这是因为i /= 2 等价于 i>>=1。当 i 为偶数时,i 的二进制表示中最低位为‘0’, i>>=1并不改变其二进制表示中‘1’的位数;当 i 为奇数时,对应的二进制最低位为‘1’, i>>=1会使 i 的二进制表示中‘1’的位数减少一位。
i 二进制表示 '1' res[i] 0 0000 0 res[0]=0
-------------
1 0001 1 res[1]=res[0]+1
-------------
2 0010 1 res[2]=res[1]
3 0011 2 res[3]=res[1]+1
-------------
4 0100 1 res[4]=res[2]
5 0101 2 res[5]=res[2]+1
6 0110 2 res[6]=res[3]
7 0111 3 res[7]=res[3]+1
-------------
8 1000 1 ...
9 1001 2
10 1010 2
11 1011 3
12 1100 2
13 1101 3
14 1110 3
15 1111 4
解法二代码如下:(3ms,beats 41.16%)
public int[] countBits(int num) {
int[] res = new int[num + 1];
int i = 1, j, k = 2;
res[0] = 0;
while (i <= num) {
if (i % 2 == 1)
res[i] = res[i / 2] + 1;
else
res[i] = res[i / 2];
i++;
}
return res;
}
解法三:这是一种更简单的方法,规律是从i=1开始,res[i] = res[i & (i-1)] + 1。
i 二进制表示 '1' i&(i-1) res[i] 0 0000 0 \ res[0]=0
-------------
1 0001 1 0 res[1]=res[0]+1
-------------
2 0010 1 0 res[2]=res[0]+1
3 0011 2 2 res[3]=res[2]+1
-------------
4 0100 1 0 res[4]=res[0]+1
5 0101 2 4 res[5]=res[4]+1
6 0110 2 4 res[6]=res[4]+1
7 0111 3 6 res[7]=res[6]+1
-------------
8 1000 1 ... ...
9 1001 2
10 1010 2
11 1011 3
12 1100 2
13 1101 3
14 1110 3
15 1111 4
解法三代码如下:(2ms,beats 87.75%)
public int[] countBits(int num) {
int[] res = new int[num + 1];
int i = 1;
res[0] = 0;
while (i <= num) {
res[i] = res[i & (i - 1)] + 1;
i++;
}
return res;
}
还没有评论,来说两句吧...