机器学习原理解读:决策树

今天药忘吃喽~ 2022-09-04 00:48 26阅读 0赞

发表评论

表情:
评论列表 (有 0 条评论,26人围观)

还没有评论,来说两句吧...

相关阅读

    相关 机器学习-决策

    决策树是常见的机器学习算法。类似于人类在面临决策问题时的自然处理机制,是基于树结构来进行决策的。例如,我们要对“这是好瓜吗?”的问题进行决策,通常会进行一系列的子决策:我们会先

    相关 机器学习基础--决策

    决策树是很基础很经典的一个分类方法,基本上很多工业中很使用且常用的算法基础都是决策树,比如boost,GBDT,CART(分类回归树),我们后需会慢慢分析,决策时定义如下:

    相关 机器学习决策 总结

    具体的细节概念就不提了,这篇blog主要是用来总结一下决策树的要点和注意事项,以及应用一些决策树代码的。 一、决策树的优点: • 易于理解和解释。数可以可视化。也就是说

    相关 机器学习决策

    决策树 【关键词】树,熵,信息增益 决策树的优缺点 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。既能用于分类,也能用