Spring Boot整合Kafka

Bertha 。 2023-06-12 08:38 87阅读 0赞

Kafka是一个分布式的、可分区的、可复制的消息系统,下面是Kafka的几个基本术语:

  1. Kafka将消息以topic为单位进行归纳;
  2. 将向Kafka topic发布消息的程序成为producers
  3. 将预订topics并消费消息的程序成为consumer
  4. Kafka以集群的方式运行,可以由一个或多个服务组成,每个服务叫做一个broker

producers通过网络将消息发送到Kafka集群,集群向消费者提供消息,如下图所示:

140721072031172.png

创建一个topic时,可以指定partitions(分区)数目,partitions数越多,其吞吐量也越大,但是需要的资源也越多,同时也会导致更高的不可用性,kafka在接收到producers发送的消息之后,会根据均衡策略将消息存储到不同的partitions中:

log\_anatomy.png

在每个partitions中,消息以顺序存储,最晚接收的的消息会最后被消费。

producers在向kafka集群发送消息的时候,可以通过指定partitions来发送到指定的partitions中。也可以通过指定均衡策略来将消息发送到不同的partitions中。如果不指定,就会采用默认的随机均衡策略,将消息随机的存储到不同的partitions中。

在consumer消费消息时,kafka使用offset来记录当前消费的位置:

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ExNTEwMjc4MDcwNQ_size_16_color_FFFFFF_t_70

在kafka的设计中,可以有多个不同的group来同时消费同一个topic下的消息,如图,我们有两个不同的group同时消费,他们的的消费的记录位置offset各不项目,不互相干扰。

对于一个group而言,consumer的数量不应该多于partitions的数量,因为在一个group中,每个partitions至多只能绑定到一个consumer上,即一个consumer可以消费多个partitions,一个partitions只能给一个consumer消费。因此,若一个group中的consumer数量大于partitions数量的话,多余的consumer将不会收到任何消息。

format_png

Kafka安装使用

这里演示在Windows下Kafka安装与使用。Kafka下载地址:http://kafka.apache.org/downloads,选择二进制文件下载(Binary downloads),然后解压即可。

Kafka的配置文件位于config目录下,因为Kafka集成了Zookeeper(Kafka存储消息的地方),所以config目录下除了有Kafka的配置文件server.properties外,还可以看到一个Zookeeper配置文件zookeeper.properties:

QQ截图20190326103520.png

打开server.properties,将broker.id的值修改为1,每个broker的id都必须设置为Integer类型,且不能重复。Zookeeper的配置保持默认即可。

接下来开始使用Kafka。

启动Zookeeper

在Windows下执行下面这些命令可能会出现找不到或无法加载主类的问题,解决方案可参考:https://blog.csdn.net/cx2932350/article/details/78870135。

在Kafka根目录下使用cmd执行下面这条命令,启动ZK:








  1. 1
  1. bin\windows\zookeeper-server-start.bat config\zookeeper.properties

在Linux下,可以使用后台进程的方式启动ZK:








  1. 1
  1. bin/zookeeper-server-start.sh -daemon config/zookeeper.properties

启动Kafka

执行下面这条命令启动Kafka:








  1. 1
  1. bin\windows\kafka-server-start.bat config\server.properties

Linux对应命令:








  1. 1
  1. bin/kafka-server-start.sh config/server.properties

当看到命令行打印如下信息,说明启动完毕:

QQ截图20190326110506.png

创建Topic

执行下面这条命令创建一个Topic








  1. 1
  1. bin\windows\kafka-topics.bat create zookeeper localhost:2181 replication-factor 1 partitions 1 topic test

这条命令的意思是,创建一个Topic到ZK(指定ZK的地址),副本个数为1,分区数为1,Topic的名称为test。

Linux对应的命令为:








  1. 1
  1. bin/kafka-topics.sh create zookeeper localhost:2181 replication-factor 1 partitions 1 topic test

创建好后我们可以查看Kafka里的Topic列表:








  1. 1
  1. bin\windows\kafka-topics.bat list zookeeper localhost:2181

QQ截图20190326111559.png

可看到目前只包含一个我们刚创建的test Topic。

Linux对应的命令为:








  1. 1
  1. bin/kafka-topics.sh list zookeeper localhost:2181

查看test Topic的具体信息:








  1. 1
  1. bin\windows\kafka-topics.bat describe zookeeper localhost:2181 topic test

QQ截图20190326111928.png

Linux对应的命令为:








  1. 1
  1. bin/kafka-topics.sh describe zookeeper localhost:2181 topic test

生产消息和消费消息

启动Producers








  1. 1
  1. bin\windows\kafka-console-producer.bat broker-list localhost:9092 topic test

9092为生产者的默认端口号。这里启动了生产者,准备往test Topic里发送数据。

Linux下对应的命令为:








  1. 1
  1. bin/kafka-console-producer.sh broker-list localhost:9092 topic test

启动Consumers

接着启动一个消费者用于消费生产者生产的数据,新建一个cmd窗口,输入下面这条命令:








  1. 1
  1. bin\windows\kafka-console-consumer.bat bootstrap-server localhost:9092 topic test from-beginning

from-beginning表示从头开始读取数据。

Linux下对应的命令为:








  1. 1
  1. bin/kafka-console-consumer.sh bootstrap-server localhost:9092 topic test from-beginning

启动好生产者和消费者后我们在生产者里生产几条数据:

QQ截图20190326113911.png

消费者成功接收到数据:

QQ截图20190326113950.png

Spring Boot整合Kafaka

上面简单介绍了Kafka的使用,下面我们开始在Spring Boot里使用Kafka。

新建一个Spring Boot项目,版本为2.1.3.RELEASE,并引入如下依赖:








  1. 1
    2
    3
    4
    5
    6
    7
    8
  1. <dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
    </dependency>

生产者配置

新建一个Java配置类KafkaProducerConfig,用于配置生产者:








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
  1. @Configuration
    public class KafkaProducerConfig {

    @Value(“${spring.kafka.bootstrap-servers}”)
    private String bootstrapServers;

    @Bean
    public ProducerFactory<String, String> producerFactory() {
    Map<String, Object> configProps = new HashMap<>();
    configProps.put(
    ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
    bootstrapServers);
    configProps.put(
    ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
    StringSerializer.class);
    configProps.put(
    ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
    StringSerializer.class);
    return new DefaultKafkaProducerFactory<>(configProps);
    }

    @Bean
    public KafkaTemplate<String, String> kafkaTemplate() {
    return new KafkaTemplate<>(producerFactory());
    }
    }

首先我们配置了一个producerFactory,方法里配置了Kafka Producer实例的策略。bootstrapServers为Kafka生产者的地址,我们在配置文件application.yml里配置它:








  1. 1
    2
    3
  1. spring:
    kafka:
    bootstrap-servers: localhost:9092

ProducerConfig.KEY_SERIALIZER_CLASS_CONFIGProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG指定了key,value序列化策略,这里指定为Kafka提供的StringSerializer,因为我们暂时只发送简单的String类型的消息。

接着我们使用producerFactory配置了kafkaTemplate,其包含了发送消息的便捷方法,后面我们就用这个对象来发送消息。

发布消息

配置好生产者,我们就可以开始发布消息了。

新建一个SendMessageController








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
  1. @RestController
    public class SendMessageController {

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @GetMapping(“send/{message}”)
    public void send(@PathVariable String message) {
    this.kafkaTemplate.send(“test”, message);
    }
    }

我们注入了kafkaTemplate对象,key-value都为String类型,并通过它的send方法来发送消息。其中test为Topic的名称,上面我们已经使用命令创建过这个Topic了。

send方法是一个异步方法,我们可以通过回调的方式来确定消息是否发送成功,我们改造SendMessageController








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
  1. @RestController
    public class SendMessageController {

    private Logger logger = LoggerFactory.getLogger(this.getClass());

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @GetMapping(“send/{message}”)
    public void send(@PathVariable String message) {
    ListenableFuture<SendResult<String, String>> future = this.kafkaTemplate.send(“test”, message);
    future.addCallback(new ListenableFutureCallback<SendResult<String, String>>() {
    @Override
    public void onSuccess(SendResult<String, String> result) {
    logger.info(“成功发送消息:{},offset=[{}]”, message, result.getRecordMetadata().offset());
    }

    @Override
    public void onFailure(Throwable ex) {
    logger.error(“消息:{} 发送失败,原因:{}”, message, ex.getMessage());
    }
    });
    }
    }

消息发送成功后,会回调onSuccess方法,发送失败后回调onFailure方法。

消费者配置

接着我们来配置消费者,新建一个Java配置类KafkaConsumerConfig








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
  1. @EnableKafka
    @Configuration
    public class KafkaConsumerConfig {

    @Value(“${spring.kafka.bootstrap-servers}”)
    private String bootstrapServers;

    @Value(“${spring.kafka.consumer.group-id}”)
    private String consumerGroupId;

    @Value(“${spring.kafka.consumer.auto-offset-reset}”)
    private String autoOffsetReset;

    @Bean
    public ConsumerFactory<String, String> consumerFactory() {
    Map<String, Object> props = new HashMap<>();
    props.put(
    ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
    bootstrapServers);
    props.put(
    ConsumerConfig.GROUP_ID_CONFIG,
    consumerGroupId);
    props.put(
    ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,
    autoOffsetReset);
    props.put(
    ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
    StringDeserializer.class);
    props.put(
    ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
    StringDeserializer.class);
    return new DefaultKafkaConsumerFactory<>(props);
    }

    @Bean
    public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() {
    ConcurrentKafkaListenerContainerFactory<String, String> factory
    = new ConcurrentKafkaListenerContainerFactory<>();
    factory.setConsumerFactory(consumerFactory());
    return factory;
    }
    }

consumerGroupIdautoOffsetReset需要在application.yml里配置:








  1. 1
    2
    3
    4
    5
  1. spring:
    kafka:
    consumer:
    group-id: test-consumer
    auto-offset-reset: latest

其中group-id将消费者进行分组(你也可以不进行分组),组名为test-consumer,并指定了消息读取策略,包含四个可选值:

QQ截图20190326154735.png

  • earliest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费
  • latest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据
  • none:topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常
  • exception:直接抛出异常

KafkaConsumerConfig中我们配置了ConsumerFactoryKafkaListenerContainerFactory。当这两个Bean成功注册到Spring IOC容器中后,我们便可以使用@KafkaListener注解来监听消息了。

配置类上需要@EnableKafka注释才能在Spring托管Bean上检测@KafkaListener注解。

消息消费

配置好消费者,我们就可以开始消费消息了,新建KafkaMessageListener








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
  1. @Component
    public class KafkaMessageListener {

    private Logger logger = LoggerFactory.getLogger(this.getClass());

    @KafkaListener(topics = test”, groupId = test-consumer”)
    public void listen(String message) {
    logger.info(“接收消息: {}”, message);
    }
    }

我们通过@KafkaListener注解来监听名称为test的Topic,消费者分组的组名为test-consumer

演示

启动Spring Boot项目,启动过程中,控制台会输出Kafka的配置,启动好后,访问http://localhost:8080/send/hello,mrbird,控制台输出如下:

QQ截图20190326155948.png

@KafkaListener详解

@KafkaListener除了可以指定Topic名称和分组id外,我们还可以同时监听来自多个Topic的消息:








  1. 1
  1. @KafkaListener(topics = topic1, topic2”)

我们还可以通过@Header注解来获取当前消息来自哪个分区(partitions):








  1. 1
    2
    3
    4
    5
  1. @KafkaListener(topics = test”, groupId = test-consumer”)
    public void listen(@Payload String message,
    @Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition) {
    logger.info(“接收消息: {},partition:{}”, message, partition);
    }

重启项目,再次访问http://localhost:8080/send/hello,mrbird,控制台输出如下:

QQ图片20190326162014.png

因为我们没有进行分区,所以test Topic只有一个区,下标为0。

我们可以通过@KafkaListener来指定只接收来自特定分区的消息:








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
  1. @KafkaListener(groupId = test-consumer”,
    topicPartitions = @TopicPartition(topic = test”,
    partitionOffsets = {
    @PartitionOffset(partition = 0”, initialOffset = 0”)
    }))
    public void listen(@Payload String message,
    @Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition) {
    logger.info(“接收消息: {},partition:{}”, message, partition);
    }

如果不需要指定initialOffset,上面代码可以简化为:








  1. 1
    2
  1. @KafkaListener(groupId = test-consumer”,
    topicPartitions = @TopicPartition(topic = test”, partitions = { 0”, 1 }))

消息过滤器

我们可以为消息监听添加过滤器来过滤一些特定的信息。我们在消费者配置类KafkaConsumerConfigkafkaListenerContainerFactory方法里配置过滤规则:








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
  1. @Bean
    public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() {
    ConcurrentKafkaListenerContainerFactory<String, String> factory
    = new ConcurrentKafkaListenerContainerFactory<>();
    factory.setConsumerFactory(consumerFactory());
    // ———- 过滤配置 ————
    factory.setRecordFilterStrategy(
    r -> r.value().contains(“fuck”)
    );
    return factory;
    }

setRecordFilterStrategy接收RecordFilterStrategy<K, V>,他是一个函数式接口:








  1. 1
    2
    3
  1. public interface RecordFilterStrategy<K, V> {
    boolean filter(ConsumerRecord<K, V> var1);
    }

所以我们用lambda表达式指定了上面这条规则,即如果消息内容包含fuck这个粗鄙之语的时候,则不接受消息。

配置好后我们重启项目,分别发送下面这两条请求:

  1. http://localhost:8080/send/fuck,mrbird
  2. http://localhost:8080/send/love,mrbird

观察控制台:

QQ截图20190326163502.png

可以看到,fuck,mrbird这条消息没有被接收。

发送复杂的消息

截至目前位置我们只发送了简单的字符串类型的消息,我们可以自定义消息转换器来发送复杂的消息。

定义消息实体

创建一个Message类:








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
  1. public class Message implements Serializable {
    private static final long serialVersionUID = 6678420965611108427L;

    private String from;

    private String message;

    public Message() {

    }

    public Message(String from, String message) {
    this.from = from;
    this.message = message;
    }

    @Override
    public String toString() {
    return Message{“ +
    from=’” + from + \’ +
    “, message=’” + message + \’ +
    ‘}’;
    }

    // get set 略
    }

改造消息生产者配置








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
  1. @Configuration
    public class KafkaProducerConfig {

    @Value(“${spring.kafka.bootstrap-servers}”)
    private String bootstrapServers;

    @Bean
    public ProducerFactory<String, Message> producerFactory() {
    Map<String, Object> configProps = new HashMap<>();
    configProps.put(
    ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
    bootstrapServers);
    configProps.put(
    ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
    StringSerializer.class);
    configProps.put(
    ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
    JsonSerializer.class);
    return new DefaultKafkaProducerFactory<>(configProps);
    }

    @Bean
    public KafkaTemplate<String, Message> kafkaTemplate() {
    return new KafkaTemplate<>(producerFactory());
    }
    }

我们将value序列化策略指定为了Kafka提供的JsonSerializer,并且kafkaTemplate返回类型为KafkaTemplate<String, Message>

发送新的消息

SendMessageController里发送复杂的消息:








  1. 1
    2
    3
    4
    5
    6
    7
  1. @Autowired
    private KafkaTemplate<String, Message> kafkaTemplate;

    @GetMapping(“send/{message}”)
    public void sendMessage(@PathVariable String message) {
    this.kafkaTemplate.send(“test”, new Message(“mrbird”, message));
    }

修改消费者配置

修改消费者配置KafkaConsumerConfig








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
  1. @EnableKafka
    @Configuration
    public class KafkaConsumerConfig {

    @Value(“${spring.kafka.bootstrap-servers}”)
    private String bootstrapServers;

    @Value(“${spring.kafka.consumer.group-id}”)
    private String consumerGroupId;

    @Value(“${spring.kafka.consumer.auto-offset-reset}”)
    private String autoOffsetReset;

    @Bean
    public ConsumerFactory<String, Message> consumerFactory() {
    Map<String, Object> props = new HashMap<>();
    props.put(
    ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
    bootstrapServers);
    props.put(
    ConsumerConfig.GROUP_ID_CONFIG,
    consumerGroupId);
    props.put(
    ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,
    autoOffsetReset);
    return new DefaultKafkaConsumerFactory<>(
    props,
    new StringDeserializer(),
    new JsonDeserializer<>(Message.class));
    }

    @Bean
    public ConcurrentKafkaListenerContainerFactory<String, Message> kafkaListenerContainerFactory() {
    ConcurrentKafkaListenerContainerFactory<String, Message> factory
    = new ConcurrentKafkaListenerContainerFactory<>();
    factory.setConsumerFactory(consumerFactory());
    return factory;
    }
    }

修改消息监听

修改KafkaMessageListener








  1. 1
    2
    3
    4
  1. @KafkaListener(topics = test”, groupId = test-consumer”)
    public void listen(Message message) {
    logger.info(“接收消息: {}”, message);
    }

重启项目,访问http://localhost:8080/send/hello,控制台输出如下:

QQ截图20190326171125.png

更多配置








  1. 1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
  1. spring.kafka.admin.client-id= # ID to pass to the server when making requests. Used for server-side logging.
    spring.kafka.admin.fail-fast=false # Whether to fail fast if the broker is not available on startup.
    spring.kafka.admin.properties.= # Additional admin-specific properties used to configure the client.
    spring.kafka.admin.ssl.key-password= # Password of the private key in the key store file.
    spring.kafka.admin.ssl.key-store-location= # Location of the key store file.
    spring.kafka.admin.ssl.key-store-password= # Store password for the key store file.
    spring.kafka.admin.ssl.key-store-type= # Type of the key store.
    spring.kafka.admin.ssl.protocol= # SSL protocol to use.
    spring.kafka.admin.ssl.trust-store-location= # Location of the trust store file.
    spring.kafka.admin.ssl.trust-store-password= # Store password for the trust store file.
    spring.kafka.admin.ssl.trust-store-type= # Type of the trust store.
    spring.kafka.bootstrap-servers= # Comma-delimited list of host:port pairs to use for establishing the initial connections to the Kafka cluster. Applies to all components unless overridden.
    spring.kafka.client-id= # ID to pass to the server when making requests. Used for server-side logging.
    spring.kafka.consumer.auto-commit-interval= # Frequency with which the consumer offsets are auto-committed to Kafka if ‘enable.auto.commit’ is set to true.
    spring.kafka.consumer.auto-offset-reset= # What to do when there is no initial offset in Kafka or if the current offset no longer exists on the server.
    spring.kafka.consumer.bootstrap-servers= # Comma-delimited list of host:port pairs to use for establishing the initial connections to the Kafka cluster. Overrides the global property, for consumers.
    spring.kafka.consumer.client-id= # ID to pass to the server when making requests. Used for server-side logging.
    spring.kafka.consumer.enable-auto-commit= # Whether the consumer’s offset is periodically committed in the background.
    spring.kafka.consumer.fetch-max-wait= # Maximum amount of time the server blocks before answering the fetch request if there isn’t sufficient data to immediately satisfy the requirement given by “fetch-min-size”.
    spring.kafka.consumer.fetch-min-size= # Minimum amount of data the server should return for a fetch request.
    spring.kafka.consumer.group-id= # Unique string that identifies the consumer group to which this consumer belongs.
    spring.kafka.consumer.heartbeat-interval= # Expected time between heartbeats to the consumer coordinator.
    spring.kafka.consumer.key-deserializer= # Deserializer class for keys.
    spring.kafka.consumer.max-poll-records= # Maximum number of records returned in a single call to poll().
    spring.kafka.consumer.properties.
    = # Additional consumer-specific properties used to configure the client.
    spring.kafka.consumer.ssl.key-password= # Password of the private key in the key store file.
    spring.kafka.consumer.ssl.key-store-location= # Location of the key store file.
    spring.kafka.consumer.ssl.key-store-password= # Store password for the key store file.
    spring.kafka.consumer.ssl.key-store-type= # Type of the key store.
    spring.kafka.consumer.ssl.protocol= # SSL protocol to use.
    spring.kafka.consumer.ssl.trust-store-location= # Location of the trust store file.
    spring.kafka.consumer.ssl.trust-store-password= # Store password for the trust store file.
    spring.kafka.consumer.ssl.trust-store-type= # Type of the trust store.
    spring.kafka.consumer.value-deserializer= # Deserializer class for values.
    spring.kafka.jaas.control-flag=required # Control flag for login configuration.
    spring.kafka.jaas.enabled=false # Whether to enable JAAS configuration.
    spring.kafka.jaas.login-module=com.sun.security.auth.module.Krb5LoginModule # Login module.
    spring.kafka.jaas.options= # Additional JAAS options.
    spring.kafka.listener.ack-count= # Number of records between offset commits when ackMode is “COUNT” or “COUNT_TIME”.
    spring.kafka.listener.ack-mode= # Listener AckMode. See the spring-kafka documentation.
    spring.kafka.listener.ack-time= # Time between offset commits when ackMode is “TIME” or “COUNT_TIME”.
    spring.kafka.listener.client-id= # Prefix for the listener’s consumer client.id property.
    spring.kafka.listener.concurrency= # Number of threads to run in the listener containers.
    spring.kafka.listener.idle-event-interval= # Time between publishing idle consumer events (no data received).
    spring.kafka.listener.log-container-config= # Whether to log the container configuration during initialization (INFO level).
    spring.kafka.listener.monitor-interval= # Time between checks for non-responsive consumers. If a duration suffix is not specified, seconds will be used.
    spring.kafka.listener.no-poll-threshold= # Multiplier applied to “pollTimeout” to determine if a consumer is non-responsive.
    spring.kafka.listener.poll-timeout= # Timeout to use when polling the consumer.
    spring.kafka.listener.type=single # Listener type.
    spring.kafka.producer.acks= # Number of acknowledgments the producer requires the leader to have received before considering a request complete.
    spring.kafka.producer.batch-size= # Default batch size.
    spring.kafka.producer.bootstrap-servers= # Comma-delimited list of host:port pairs to use for establishing the initial connections to the Kafka cluster. Overrides the global property, for producers.
    spring.kafka.producer.buffer-memory= # Total memory size the producer can use to buffer records waiting to be sent to the server.
    spring.kafka.producer.client-id= # ID to pass to the server when making requests. Used for server-side logging.
    spring.kafka.producer.compression-type= # Compression type for all data generated by the producer.
    spring.kafka.producer.key-serializer= # Serializer class for keys.
    spring.kafka.producer.properties.= # Additional producer-specific properties used to configure the client.
    spring.kafka.producer.retries= # When greater than zero, enables retrying of failed sends.
    spring.kafka.producer.ssl.key-password= # Password of the private key in the key store file.
    spring.kafka.producer.ssl.key-store-location= # Location of the key store file.
    spring.kafka.producer.ssl.key-store-password= # Store password for the key store file.
    spring.kafka.producer.ssl.key-store-type= # Type of the key store.
    spring.kafka.producer.ssl.protocol= # SSL protocol to use.
    spring.kafka.producer.ssl.trust-store-location= # Location of the trust store file.
    spring.kafka.producer.ssl.trust-store-password= # Store password for the trust store file.
    spring.kafka.producer.ssl.trust-store-type= # Type of the trust store.
    spring.kafka.producer.transaction-id-prefix= # When non empty, enables transaction support for producer.
    spring.kafka.producer.value-serializer= # Serializer class for values.
    spring.kafka.properties.
    = # Additional properties, common to producers and consumers, used to configure the client.
    spring.kafka.ssl.key-password= # Password of the private key in the key store file.
    spring.kafka.ssl.key-store-location= # Location of the key store file.
    spring.kafka.ssl.key-store-password= # Store password for the key store file.
    spring.kafka.ssl.key-store-type= # Type of the key store.
    spring.kafka.ssl.protocol= # SSL protocol to use.
    spring.kafka.ssl.trust-store-location= # Location of the trust store file.
    spring.kafka.ssl.trust-store-password= # Store password for the trust store file.
    spring.kafka.ssl.trust-store-type= # Type of the trust store.
    spring.kafka.streams.application-id= # Kafka streams application.id property; default spring.application.name.
    spring.kafka.streams.auto-startup=true # Whether or not to auto-start the streams factory bean.
    spring.kafka.streams.bootstrap-servers= # Comma-delimited list of host:port pairs to use for establishing the initial connections to the Kafka cluster. Overrides the global property, for streams.
    spring.kafka.streams.cache-max-size-buffering= # Maximum memory size to be used for buffering across all threads.
    spring.kafka.streams.client-id= # ID to pass to the server when making requests. Used for server-side logging.
    spring.kafka.streams.properties.*= # Additional Kafka properties used to configure the streams.
    spring.kafka.streams.replication-factor= # The replication factor for change log topics and repartition topics created by the stream processing application.
    spring.kafka.streams.ssl.key-password= # Password of the private key in the key store file.
    spring.kafka.streams.ssl.key-store-location= # Location of the key store file.
    spring.kafka.streams.ssl.key-store-password= # Store password for the key store file.
    spring.kafka.streams.ssl.key-store-type= # Type of the key store.
    spring.kafka.streams.ssl.protocol= # SSL protocol to use.
    spring.kafka.streams.ssl.trust-store-location= # Location of the trust store file.
    spring.kafka.streams.ssl.trust-store-password= # Store password for the trust store file.
    spring.kafka.streams.ssl.trust-store-type= # Type of the trust store.
    spring.kafka.streams.state-dir= # Directory location for the state store.
    spring.kafka.template.default-topic= # Default topic to which messages are sent.

发表评论

表情:
评论列表 (有 0 条评论,87人围观)

还没有评论,来说两句吧...

相关阅读

    相关 Spring Boot整合Kafka

    Kafka是一个分布式的、可分区的、可复制的消息系统,下面是Kafka的几个基本术语: 1. Kafka将消息以topic为单位进行归纳; 2. 将向Kafka topi