JS演示图论汇总 缺乏、安全感 2023-06-29 07:23 8阅读 0赞 BFS.js var BFSClass = function () { this.isVisit = new Array(); this.adj = new Array(); this.vQueue = new Array(); this.curV; this.temp = new Array(); this.init = function (beginV) { this.curV = null; this.temp = []; //初始化顶点访问数组 this.isVisit = []; for (var i = 0; i < vers.length; i++) this.isVisit.push(false); //初始化邻接矩阵 this.adj = []; for (var i = 0; i < vers.length; i++) { this.adj[i] = new Array(); for (var j = 0; j < vers.length; j++) this.adj[i][j] = 0; } for (var i = 0; i < edges.length; i++) { this.adj[this.Locate(edges[i].v1)][this.Locate(edges[i].v2)] = 1; this.adj[this.Locate(edges[i].v2)][this.Locate(edges[i].v1)] = 1; } //开始顶点入队列,修改顶点状态 this.vQueue = []; this.vQueue.push(beginV); beginV.setStatus(1); this.isVisit[this.Locate(beginV)] = true; DrawGraph(); Note(BFS.msg()); } this.Next = function () { if (this.vQueue.length <= 0) { alert("遍历结束"); return; } if (this.vQueue.length > 0) { this.temp = []; if (this.curV) this.curV.setStatus(1); this.curV = this.vQueue.shift(); this.curV.setStatus(2); var cur = this.Locate(this.curV); for (var j = 0; j < vers.length; j++) if (this.adj[cur][j] == 1 && !this.isVisit[j]) { this.isVisit[j] = true; this.vQueue.push(vers[j]); this.temp.push(vers[j]); } if (BFS.temp.length > 0) drawLines(vers[cur], BFS.temp, function () { BFS.temp[0].setStatus(1); edges[BFS.LocateEg(vers[cur], BFS.temp[0])].setStatus(1); DrawGraph(); }, function () { document.getElementById('NextBtn').disabled = false; }); else { document.getElementById('NextBtn').disabled = false; } DrawGraph(); Note(BFS.msg()); } } this.Locate = function (v) { for (var i = 0; i < vers.length; i++) if (vers[i] == v) return i; return -1; } this.LocateEg = function (v1, v2) { for (var i = 0; i < edges.length; i++) if ((edges[i].v1 == v1 && edges[i].v2 == v2) || (edges[i].v1 == v2 && edges[i].v2 == v1)) return i; return -1; } this.msg = function () { var s = " 当前顶点:" + BFS.curV.name + ". 队列内元素:"; for (var i = 0; i < BFS.vQueue.length; i++) s += BFS.vQueue[i].name + " "; return s; } } var BFS = new BFSClass(); DFS.js var DFSClass = function () { this.isVisit = new Array(); this.adj = new Array(); this.vstack = new Array(); this.curV; this.init = function (beginV) { //初始化顶点访问数组 this.isVisit = []; for (var i = 0; i < vers.length; i++) this.isVisit.push(false); //初始化邻接矩阵 this.adj = []; for (var i = 0; i < vers.length; i++) { this.adj[i] = new Array(); for (var j = 0; j < vers.length; j++) this.adj[i][j] = 0; } for (var i = 0; i < edges.length; i++) { this.adj[this.Locate(edges[i].v1)][this.Locate(edges[i].v2)] = 1; this.adj[this.Locate(edges[i].v2)][this.Locate(edges[i].v1)] = 1; } //开始顶点入栈,修改顶点状态 this.vstack = []; this.vstack.push(beginV); this.isVisit[this.Locate(beginV)] = true; this.curV = beginV; beginV.setStatus(2); DrawGraph(); Note(DFS.msg()); } this.Next = function () { if (this.vstack.length <= 0) { alert("遍历结束"); document.getElementById('NextBtn').disabled = false; return; } var cur = this.Locate(this.curV); for (var j = 0; j < vers.length; j++) if (this.adj[cur][j] == 1 && !this.isVisit[j]) { this.isVisit[j] = true; this.curV = vers[j]; this.vstack.push(this.curV); drawLine(vers[cur], vers[j], function () { vers[cur].setStatus(1); vers[j].setStatus(2); edges[DFS.LocateEg(vers[cur], vers[j])].setStatus(1); DrawGraph(); Note(DFS.msg()); document.getElementById('NextBtn').disabled = false; }); return; } this.curV = this.vstack.pop(); if (this.vstack.length > 0) { drawLine(DFS.curV, DFS.vstack[DFS.vstack.length - 1], function () { DFS.curV.setStatus(1); DFS.curV = DFS.vstack[DFS.vstack.length - 1]; DFS.curV.setStatus(2); DrawGraph(); Note(DFS.msg()); document.getElementById('NextBtn').disabled = false; }); } else { this.curV.setStatus(1); DrawGraph(); Note(DFS.msg()); document.getElementById('NextBtn').disabled = false; } } this.Locate = function (v) { for (var i = 0; i < vers.length; i++) if (vers[i] == v) return i; return -1; } this.LocateEg = function (v1, v2) { for (var i = 0; i < edges.length; i++) if ((edges[i].v1 == v1 && edges[i].v2 == v2) || (edges[i].v1 == v2 && edges[i].v2 == v1)) return i; return -1; } this.msg = function () { var s = " 当前顶点:" + DFS.curV.name + ". 栈内元素:"; for (var i = 0; i < DFS.vstack.length; i++) s += DFS.vstack[i].name + " "; return s; } } var DFS = new DFSClass(); kruskal.js var KruskalClass = function () { var eg; var edgeCount; this.flag = new Array(); this.sortEdge = new Array(); this.adj = new Array(); this.init = function () { this.eg = null; this.edgeCount = 0; //初始化连通分量数组 this.flag = []; for (var i = 0; i < vers.length; i++) this.flag.push(i); //初始化邻接矩阵 this.adj = []; for (var i = 0; i < vers.length; i++) { this.adj[i] = new Array(); for (var j = 0; j < vers.length; j++) this.adj[i][j] = Infinity; } for (var i = 0; i < edges.length; i++) { this.adj[this.Locate(edges[i].v1)][this.Locate(edges[i].v2)] = edges[i].weight; this.adj[this.Locate(edges[i].v2)][this.Locate(edges[i].v1)] = edges[i].weight; } //边排序 this.sortEdge = []; for (var i = 0; i < edges.length; i++) this.sortEdge.push(edges[i]); this.sortEdge.sort(this.sortNumber); Note(this.msg()); } this.Next = function () { if (Number(Kruskal.edgeCount) >= vers.length - 1) { alert("求解结束"); return; } while (this.flag[this.Locate(this.sortEdge[0].v1)] == this.flag[this.Locate(this.sortEdge[0].v2)]) this.sortEdge.shift(); this.eg = this.sortEdge[0]; blink(this.eg, function () { Kruskal.eg.setStatus(1); Kruskal.eg.v1.setStatus(1); Kruskal.eg.v2.setStatus(1); var v1Num = Kruskal.flag[Kruskal.Locate(Kruskal.eg.v1)]; var v2Num = Kruskal.flag[Kruskal.Locate(Kruskal.eg.v2)]; for (var i = 0; i < Kruskal.flag.length; i++) if (Kruskal.flag[i] == v1Num) Kruskal.flag[i] = v2Num; Kruskal.sortEdge.shift(); DrawGraph(); Kruskal.edgeCount++; document.getElementById('NextBtn').disabled = false; Note(Kruskal.msg(Kruskal.eg)); }); } this.Locate = function (v) { for (var i = 0; i < vers.length; i++) if (vers[i] == v) return i; return -1; } this.LocateEg = function (v1, v2) { for (var i = 0; i < edges.length; i++) if ((edges[i].v1 == v1 && edges[i].v2 == v2) || (edges[i].v1 == v2 && edges[i].v2 == v1)) return i; return -1; } this.msg = function (e) { var s = "本次加入边:" + e.v1.name + e.v2.name; return s; } this.sortNumber = function (a, b) { return a.weight - b.weight; } } var Kruskal = new KruskalClass(); prim.js var PrimClass = function () { var eg, trueV, falseV; this.flag = new Array(); this.tree = new Array(); this.adj = new Array(); this.init = function (beginV) { this.eg = null; this.trueV = null; this.falseV = null; this.tree = []; //初始化顶点访问数组 this.flag = []; for (var i = 0; i < vers.length; i++) this.flag.push(false); //初始化邻接矩阵 this.adj = []; for (var i = 0; i < vers.length; i++) { this.adj[i] = new Array(); for (var j = 0; j < vers.length; j++) this.adj[i][j] = Infinity; } for (var i = 0; i < edges.length; i++) { this.adj[this.Locate(edges[i].v1)][this.Locate(edges[i].v2)] = edges[i].weight; this.adj[this.Locate(edges[i].v2)][this.Locate(edges[i].v1)] = edges[i].weight; } //设置顶点和边的状态 this.flag[this.Locate(beginV)] = true; beginV.setStatus(1); this.setEdges(); DrawGraph(); Note(Prim.msg(beginV)); } this.Next = function () { if (this.tree.length >= vers.length - 1) { alert("求解结束"); return; } this.eg = this.getMinEdge(); if (this.flag[this.Locate(edges[this.eg].v1)]) { this.trueV = edges[this.eg].v1; this.falseV = edges[this.eg].v2; } else { this.trueV = edges[this.eg].v2; this.falseV = edges[this.eg].v1; } drawLine(this.trueV, this.falseV, function () { Prim.flag[Prim.Locate(Prim.falseV)] = true; Prim.falseV.setStatus(1); Prim.tree.push(edges[Prim.eg]); Prim.setEdges(); DrawGraph(); document.getElementById('NextBtn').disabled = false; Note(Prim.msg(Prim.falseV)); }); } this.Locate = function (v) { for (var i = 0; i < vers.length; i++) if (vers[i] == v) return i; return -1; } this.LocateEg = function (v1, v2) { for (var i = 0; i < edges.length; i++) if ((edges[i].v1 == v1 && edges[i].v2 == v2) || (edges[i].v1 == v2 && edges[i].v2 == v1)) return i; return -1; } this.msg = function (v) { var s = " 本次加入生成树的顶点为:" + v.name; return s; } this.setEdges = function () { for (var i = 0; i < edges.length; i++) { if (this.flag[this.Locate(edges[i].v1)] != this.flag[this.Locate(edges[i].v2)]) edges[i].setStatus(2); else edges[i].setStatus(0); } for (var i = 0; i < this.tree.length; i++) this.tree[i].setStatus(1); } this.getMinEdge = function () { var minWeight = Infinity, minPosition = -1; for (var i = 0; i < edges.length; i++) { if (this.flag[this.Locate(edges[i].v1)] != this.flag[this.Locate(edges[i].v2)] && edges[i].weight < minWeight) { minWeight = edges[i].weight; minPosition = i; } } return minPosition; } } var Prim = new PrimClass(); JS.js //半径 var r = 10; //鼠标状态 var mStatus = 3; //画边时的第一个点 var selectV = null; //顶点数组 var vers = new Array(); //边数组 var edges = new Array(); //邻接矩阵 var adj = new Array(); //遍历栈、队列 var vstack = new Array(); //接收canvas的onclick事件 function CanvasClick(e) { e = e || event; var canvas = document.getElementById('MyCanvas'); var x = e.clientX - canvas.offsetLeft; var y = e.clientY - canvas.offsetTop; switch (mStatus) { case 0: AddV(x, y); break; case 1: Select(x, y); break; case 2: AddE(x,y); break; default: break; } } //添加顶点 function AddV(x, y) { //检查坐标是否符合添加顶点的要求 if (CheckPoint(x, y)) { var v = new vertex(x, y); vers.push(v); DrawGraph(); Output(" * 添加顶点:" + v.name + "。位置:" + v.x + "," + v.y + "<br/>"); } } //选择顶点 function Select(x, y) { for (var i = 0; i < vers.length; i++) if (Math.sqrt((vers[i].x - x) * (vers[i].x - x) + (vers[i].y - y) * (vers[i].y - y)) <= 10) { selectV = vers[i]; selectV.isSelect = true; DrawGraph(); mStatus = 2; Output("<font color='red'>" + " * 选中顶点:" + selectV.name + "</font><br/>"); var canvas = document.getElementById('MyCanvas'); canvas.style.cursor = 'url(画边.png),auto'; } } //添加边 function AddE(x, y) { for (var i = 0; i < vers.length; i++) if (Math.sqrt((vers[i].x - x) * (vers[i].x - x) + (vers[i].y - y) * (vers[i].y - y)) <= 10) { var eg = new edge(selectV, vers[i]); edges.push(eg); selectV.isSelect = false; DrawGraph(); mStatus = 1; var canvas = document.getElementById('MyCanvas'); canvas.style.cursor = 'url(选点.png),auto'; Output("<font color='blue'>" + " * 添加边:" + eg.v1.name + eg.v2.name + "</font><br/>"); } } //信息输出 function Output(msg) { var outputDiv = document.getElementById('OutputDiv'); outputDiv.innerHTML += msg; } //画顶点前检查坐标是否符合要求 function CheckPoint(x, y) { if (x < 30 || x > 650 || y < 30 || y > 350) return false; for (var i = 0; i < vers.length; i++) { if (Math.sqrt((vers[i].x - x) * (vers[i].x - x) + (vers[i].y - y) * (vers[i].y - y)) < 60) return false; } return true; } //画点事件 function AddVBtnClick() { mStatus = 0; var canvas = document.getElementById('MyCanvas'); canvas.style.cursor = 'url(画点.png),auto'; } //画边事件 function AddEBtnClick() { if (selectV) { selectV.isSelect = false; var n = selectV.name; selectV = null; DrawGraph(); Output("<font color='red'>" + " * 取消顶点:" + n + "</font><br/>"); } else { mStatus = 1; var canvas = document.getElementById('MyCanvas'); canvas.style.cursor = 'url(选点.png),auto'; } } //绘图 function DrawGraph() { var canvas = document.getElementById('MyCanvas'); canvas.width = canvas.width; if (canvas.getContext) { var ctx = canvas.getContext('2d'); for (var i = 0; i < vers.length; i++) vers[i].draw(ctx); for (var i = 0; i < edges.length; i++) { edges[i].draw(ctx); } } } //顶点构造函数 var vertex = function (x, y) { this.x = x; this.y = y; this.name = String.fromCharCode(0x41 + vers.length); this.isSelect = false; this.isVisit = false; this.draw = function (ctx) { ctx.save(); ctx.beginPath(); ctx.strokeStyle = "#000000"; ctx.arc(this.x, this.y, r, 2 * Math.PI, 0, true); ctx.closePath(); ctx.stroke(); if (this.isVisit) { ctx.fillStyle = "#00FF00"; ctx.fill(); } if (this.isSelect) { ctx.fillStyle = "#FFFF00"; ctx.fill(); } ctx.fillStyle = "#FF0000"; ctx.fillText(this.name, parseInt(this.x) - 3, parseInt(this.y) + 3); ctx.restore(); } } //边构造函数 var edge = function (v1, v2) { this.v1 = v1; this.v2 = v2; this.isVisit = false; this.draw = function (ctx) { var x1 = parseInt(v1.x), y1 = parseInt(v1.y), x2 = parseInt(v2.x), y2 = parseInt(v2.y); var a = x1 - x2, b = y1 - y2, c = Math.sqrt(a * a + b * b); var beginX = x1 - a * r / c, beginY = y1 - b * r / c; var endX = x2 + a * r / c, endY = y2 + b * r / c; ctx.save(); ctx.beginPath(); if (this.isVisit) ctx.strokeStyle = "#FF0000"; else ctx.strokeStyle = "#000000"; ctx.moveTo(beginX, beginY); ctx.lineTo(endX, endY); ctx.stroke(); ctx.closePath(); ctx.restore(); } } function loadXmlFile(xmlFile) { var xmlDom = null; if (window.ActiveXObject) { xmlDom = new ActiveXObject("Microsoft.XMLDOM"); xmlDom.async = false; xmlDom.load(xmlFile) || xmlDom.loadXML(xmlFile); //如果用的是XML字符串//如果用的是xml文件 } else if (document.implementation && document.implementation.createDocument) { var xmlhttp = new window.XMLHttpRequest(); xmlhttp.open("GET", xmlFile, false); xmlhttp.send(null); xmlDom = xmlhttp.responseXML; } else { xmlDom = null; } return xmlDom; } function DrawBtnClick() { var canvas = document.getElementById('MyCanvas'); canvas.width = canvas.width; vers = []; edges = []; var ctrlDiv = document.getElementById('CtrlDiv'); CtrlDiv.innerHTML = "<input id=\"AddVBtn\" type=\"button\" value=\"画点\" onclick=\"AddVBtnClick();\" />"; CtrlDiv.innerHTML += "<input id=\"AddEBtn\" type=\"button\" value=\"画边\" onclick=\"AddEBtnClick();\" />"; } //清空 function ClearBtnClick() { var canvas = document.getElementById('MyCanvas'); canvas.width = canvas.width; vers = []; edges = []; var ctrlDiv = document.getElementById('CtrlDiv'); CtrlDiv.innerHTML = ""; } //保存 function SaveBtnClick() { var verStr=""; for (var i = 0; i < vers.length; i++) { verStr += vers[i].x + "," + vers[i].y + "," + vers[i].name; if (i != vers.length-1) verStr += "."; } var egStr=""; for (var i = 0; i < edges.length; i++) { egStr += edges[i].v1.name + "," + edges[i].v2.name; if (i != edges.length-1) egStr += "."; } document.getElementById("HiddenField").value = verStr + "|" + egStr; } //载入 function LoadBtnClick() { var xmlDoc = loadXmlFile("XMLFile.xml"); var k = xmlDoc.getElementsByTagName("Graph").length; var s = "<select id=\"GraphSelect\">"; for (var i = 0; i < k; i++) { s+="<option>"+xmlDoc.getElementsByTagName("Graph")[i].getAttribute('name')+"</option>"; } s += "</select>"; s += "<input id=\"SubmitBtn\" type=\"button\" value=\"提交\" onclick=\"SubmitBtnClick();\" />"; var ctrlDiv = document.getElementById('CtrlDiv'); CtrlDiv.innerHTML = s; } function SubmitBtnClick() { var gname=document.getElementById('GraphSelect').value; var xmlDoc = loadXmlFile("XMLFile.xml"); var count = xmlDoc.getElementsByTagName("Graph").length; var vNode, eNode; for (var i = 0; i < count; i++) if (xmlDoc.getElementsByTagName("Graph")[i].getAttribute('name') == gname) { vNode = xmlDoc.getElementsByTagName("Graph")[i].getElementsByTagName("vertexs")[0]; eNode = xmlDoc.getElementsByTagName("Graph")[i].getElementsByTagName("edges")[0]; break; } vers = []; for (var j = 0; j < vNode.getElementsByTagName("v").length; j++) { var x = vNode.getElementsByTagName("v")[j].getAttribute('x'); var y = vNode.getElementsByTagName("v")[j].getAttribute('y'); var name = vNode.getElementsByTagName("v")[j].getAttribute('name'); var v = new vertex(x, y); v.name = name; vers.push(v); } edges = []; for (var j = 0; j < eNode.getElementsByTagName("eg").length; j++) { var v1,v2; for (var k = 0; k < vers.length; k++) { if (eNode.getElementsByTagName("eg")[j].getAttribute('v1') == vers[k].name) v1 = vers[k]; if (eNode.getElementsByTagName("eg")[j].getAttribute('v2') == vers[k].name) v2=vers[k]; } var eg = new edge(v1, v2); edges.push(eg); } DrawGraph(); } //输出vstack内元素 function OutVstack() { for (var i = 0; i < vstack.length; i++) { Output(vstack[i].name+" "); } Output("<br/>"); } //DFS遍历演示 function ShowDFSBtnClick() { if (vers.length <= 0) return; var s = "<select id=\"VertexSelect\">"; for (var i = 0; i < vers.length; i++) { s += "<option>" + vers[i].name + "</option>"; } s += "</select>"; s += "<input id=\"BeginDFSBtn\" type=\"button\" value=\"开始\" onclick=\"BeginDFSBtnClick();\" />"; s += "<input id=\"NextDFSBtn\" type=\"button\" value=\"下一步\" onclick=\"NextDFSBtnClick();\" />"; var ctrlDiv = document.getElementById('CtrlDiv'); CtrlDiv.innerHTML = s; } function Locate(v) { for (var i = 0; i < vers.length; i++) if (vers[i] == v) return i; return -1; } function LocateEg(v1, v2) { for (var i = 0; i < edges.length; i++) if ((edges[i].v1 == v1 && edges[i].v2 == v2)||(edges[i].v1 == v2 && edges[i].v2 == v1)) return i; return -1; } function BeginDFSBtnClick() { var outputDiv = document.getElementById('OutputDiv'); outputDiv.innerHTML = ""; //初始化邻接矩阵,栈 adj = []; for (var i = 0; i < vers.length; i++) { adj[i] = new Array(); for (var j = 0; j < vers.length; j++) adj[i][j] = 0; } for (var i = 0; i < edges.length; i++) { adj[Locate(edges[i].v1)][Locate(edges[i].v2)] = 1; adj[Locate(edges[i].v2)][Locate(edges[i].v1)] = 1; } vstack = []; //获取开始顶点 var vname = document.getElementById('VertexSelect').value; //开始顶点入栈,修改顶点状态,重绘图 for (var i = 0; i < vers.length; i++) if (vers[i].name == vname) { vstack.push(vers[i]); vers[i].isVisit = true; vers[i].isSelect = true; Output(" * 访问顶点" + vers[i].name + "<br/>"); Output(" * 顶点" + vers[i].name + "入栈,当前顶点为:" + vers[i].name + "<br/>"); } DrawGraph(); } function NextDFSBtnClick() { if (vstack.length <= 0) { alert("遍历结束"); Output("<br/> * 遍历结束<br/>"); return; } var cur = Locate(vstack[vstack.length - 1]); for (var j = 0; j < vers.length; j++) if (adj[cur][j] == 1 && !vers[j].isVisit) { vers[j].isVisit = true; vers[j].isSelect = true; vers[cur].isSelect = false; vstack.push(vers[j]); edges[LocateEg(vers[cur], vers[j])].isVisit = true; DrawGraph(); Output(" * 通过顶点" + vers[cur].name + "访问顶点" + vers[j].name + ","); Output("顶点" + vers[cur].name + "入栈,当前顶点为:" + vers[j].name + "<br/>"); return; } vers[cur].isSelect = false; Output(" * 将顶点" + vers[cur].name + "出栈"); vstack.pop(); if (vstack.length > 0) { vstack[vstack.length - 1].isSelect = true; Output(",当前顶点为:" + vstack[vstack.length - 1].name + "<br/>"); } DrawGraph(); } //BFS遍历演示 function ShowBFSBtnClick() { if (vers.length <= 0) return; var s = "<select id=\"VertexSelect\">"; for (var i = 0; i < vers.length; i++) { s += "<option>" + vers[i].name + "</option>"; } s += "</select>"; s += "<input id=\"BeginBFSBtn\" type=\"button\" value=\"开始\" onclick=\"BeginBFSBtnClick();\" />"; s += "<input id=\"NextBFSBtn\" type=\"button\" value=\"下一步\" onclick=\"NextBFSBtnClick();\" />"; var ctrlDiv = document.getElementById('CtrlDiv'); CtrlDiv.innerHTML = s; } function BeginBFSBtnClick() { var outputDiv = document.getElementById('OutputDiv'); outputDiv.innerHTML = ""; //初始化邻接矩阵,队列 adj = []; for (var i = 0; i < vers.length; i++) { adj[i] = new Array(); for (var j = 0; j < vers.length; j++) adj[i][j] = 0; } for (var i = 0; i < edges.length; i++) { adj[Locate(edges[i].v1)][Locate(edges[i].v2)] = 1; adj[Locate(edges[i].v2)][Locate(edges[i].v1)] = 1; } vstack = []; //获取开始顶点 var vname = document.getElementById('VertexSelect').value; //开始顶点入队列,修改顶点状态,重绘图 for (var i = 0; i < vers.length; i++) if (vers[i].name == vname) { vstack.push(vers[i]); vers[i].isVisit = true; vers[i].isSelect = true; Output(" * 访问顶点" + vers[i].name + "<br/>"); Output(" * 顶点" + vers[i].name + "入队<br/>"); Output("队列内元素:"); OutVstack(); Output("<font color='red'> * 当前顶点为:" + vers[i].name + "</font><br/>"); } DrawGraph(); } function NextBFSBtnClick() { if (vstack.length <= 0) { alert("遍历结束"); Output("<br/> * 遍历结束<br/>"); return; } var cur = Locate(vstack[0]); for (var j = 0; j < vers.length; j++) if (adj[cur][j] == 1 && !vers[j].isVisit) { vers[j].isVisit = true; vstack.push(vers[j]); Output(" * 访问顶点" + vers[j].name + "并入队<br/>"); edges[LocateEg(vers[cur], vers[j])].isVisit = true; } vstack.shift(); vers[cur].isSelect = false; if (vstack.length <= 0) { alert("遍历结束"); Output("<br/> * 遍历结束<br/>"); DrawGraph(); return; } vstack[0].isSelect = true; DrawGraph(); Output("队列内元素:"); OutVstack(); Output("<font color='red'> * 当前顶点为:" + vstack[0].name + "</font><br/>"); } function DelBtnClick() { var canvas = document.getElementById('MyCanvas'); canvas.style.cursor = 'url(删除.png),auto'; }
相关 图论 一、图的常用概念 1、顶点(vertex) 2、边(edge) 3、路径 4、无向图:顶点之间的连接没有方向 ![1007094-201909 柔光的暖阳◎/ 2023年10月10日 07:53/ 0 赞/ 81 阅读
相关 图论基础 图 图由节点和图构成; 有向图:连线有方向;不对称性; 无向图:连线无方向;是有向图的一种特殊请情况; 有权图:连线有权值; 无权图:连线无权值; 简 柔情只为你懂/ 2023年08月17日 17:48/ 0 赞/ 162 阅读
相关 图论之欧拉图 欧拉路径/欧拉回路 欧拉路径是一条经过图中所有边且只经过一次的路径(类似于一笔画问题); 欧拉回路的话就是起点和终点相同的欧拉路径 欧拉通路(欧拉路径):S点到T点的 蔚落/ 2023年08月17日 16:26/ 0 赞/ 181 阅读
相关 JS演示图论汇总 BFS.js var BFSClass = function () { this.isVisit = new Array(); thi 缺乏、安全感/ 2023年06月29日 07:23/ 0 赞/ 9 阅读
相关 图论方法应用 声明:本博客题目和题解均来自www.acwing.com,侵权联删。 各种图论题目最合适的解法如下: ![在这里插入图片描述][watermark_type_ZmFu 小鱼儿/ 2022年10月17日 00:54/ 0 赞/ 164 阅读
相关 图论 http://[blog.csdn.net/pipisorry/article/details/52518118][blog.csdn.net_pipisorry_articl 清疚/ 2022年09月25日 15:21/ 0 赞/ 276 阅读
相关 一些图论、网络流入门题总结、汇总 最短路问题 此类问题类型不多,变形较少 POJ 2449 Remmarguts' Date(中等) [http://acm.pku.edu.cn/JudgeOn 系统管理员/ 2022年09月24日 05:15/ 0 赞/ 166 阅读
相关 图论算法 Problem1一笔画问题 题目描述 给出一个图,求其欧拉回路(若没有回路,则求其欧拉路径),若不存在则输出‘No solution’ 输入 输入的第一 妖狐艹你老母/ 2022年01月06日 22:13/ 0 赞/ 284 阅读
相关 图论重点复习 一、重点概念 1、图:一个图是一个序偶(V,E),记为G=( V , E),其中: (1) V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。用|V|表示顶点 冷不防/ 2021年09月26日 18:36/ 0 赞/ 1161 阅读
相关 JS思维导图汇总 1.JavaScript变量 ![在这里插入图片描述][20190905184022512.png] 2.JavaScript运算符 ![在这里插入图片描述][2 野性酷女/ 2021年07月04日 22:54/ 0 赞/ 342 阅读
还没有评论,来说两句吧...