发表评论取消回复
相关阅读
相关 卷积神经网络CNN与深度卷积神经网络-学习笔记
卷积神经网络与深度卷积神经网络学习总结笔记 0. 卷积神经网络基础 0.1 二维卷积层(二维卷积层,常用于处理图像数据) 0.1.1
相关 卷积神经网络学习路线(二十二)| Google Brain EfficientNet
1. 前言 这是卷积神经网络学习路线的的第二十二篇文章,要介绍的是2019年Google Brain的大作EfficientNet,论文全名为EfficientNet:R
相关 卷积神经网络学习路线(十五) | NIPS 2017 Dual Path Network(ResNeXt+DensetNet结合版)
前言 前面已经讲了ResNet,ResNeXt,以及DenseNet,讲解的原文都可以在文后找到。今天要介绍的DPN(双路网络)是2017年由颜水成老师提出的,作者的简介
相关 卷积神经网络学习路线(十一)| Stochastic Depth(随机深度网络)
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 卷积神经网络学习路线(十)| 里程碑式创新的ResNet
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 卷积神经网络学习路线(六)| 经典网络回顾之LeNet
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 卷积神经网络学习路线(五)| 卷积神经网络参数设置,提高泛化能力?
前言 这是卷积神经网络学习路线的第五篇文章,主要为大家介绍一下卷积神经网络的参数设置,调参技巧以及被广泛应用在了哪些领域,希望可以帮助到大家。 卷积神经网络的参数设置
相关 图神经网络——【NIPS 2017】GraphSAGE
先了解两个概念: 直推式(transductive)学习:从特殊到特殊,仅考虑当前数据。在图中学习目标是学习目标是直接生成当前节点的embedding,例如DeepWa
相关 神经网络-卷积神经网络
卷积神经网络最基本的操作:卷积、池化、全连接 1、卷积操作 什么是卷积操作?我们先定义一个目的,让卷积神经网络去识别数字 “17” 和字母 “L”。 有三张图片,
还没有评论,来说两句吧...