计算机视觉实战之歪头变正脸

梦里梦外; 2023-07-12 03:37 21阅读 0赞

在有的时候,我们需要正面的脸。但是经常拍到的图是有点侧面的,比如这样的:

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70

头稍微有点歪,看一下预期效果:

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 1

右边的脸是不是有点扳正的感觉了。

代码如下:

  1. import cv2
  2. import matplotlib.pyplot as plt
  3. import dlib
  4. import numpy as np
  5. import time
  6. #读取图片
  7. res="C:\\Users\Administrator\\Pictures\\Saved Pictures\\56565.jpg"
  8. dis="C:\\Users\Administrator\\Pictures\\Saved Pictures\\"+str(time.time())+".png"
  9. bgrImg=cv2.imread(res)
  10. image = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
  11. #获取detector
  12. detector=dlib.get_frontal_face_detector()
  13. #加载模型文件
  14. mode_path="E:\\BaiduNetdiskDownload\\shape_predictor_68_face_landmarks.dat"
  15. shape_predictor = dlib.shape_predictor(mode_path)
  16. dets =detector(image , 1)
  17. #获取landmarks
  18. for detection in dets:
  19. face_landmarks = [(item.x, item.y) for item in shape_predictor(image , detection).parts()]
  20. x= [i[0] for i in face_landmarks]
  21. y=[i[1] for i in face_landmarks]
  22. #画带识别的原始图
  23. plt.plot(x,y,'ro')
  24. plt.imshow(image)
  25. plt.show()

这里采用的是dlib,这里画出来的效果如下:

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 2

紧接着我们分别画出来看看

  1. lm = np.array(face_landmarks)
  2. lm_chin = lm[0 : 17] # 脸轮廓
  3. lm_eyebrow_left = lm[17 : 22] # 左眉毛
  4. lm_eyebrow_right = lm[22 : 27] # 右眉毛
  5. lm_nose = lm[27 : 31] # 鼻子主线
  6. lm_nostrils = lm[31 : 36] # 鼻子下轮廓
  7. lm_eye_left = lm[36 : 42] # 左眼
  8. lm_eye_right = lm[42 : 48] # 右眼
  9. lm_mouth_outer = lm[48 : 60] # 画嘴巴外轮廓
  10. def plot_part(part):
  11. plt.plot([i[0] for i in part],[i[1] for i in part],'ro')
  12. plt.imshow(image)
  13. plt.show()
  14. #画脸轮廓
  15. plot_part(lm_chin)
  16. #画左眉毛
  17. plot_part(lm_eyebrow_left)
  18. #画右眉毛
  19. plot_part(lm_eyebrow_right)
  20. #画鼻子主线
  21. plot_part(lm_nose)
  22. #画鼻子下轮廓
  23. plot_part(lm_nostrils)
  24. #画左眼
  25. plot_part(lm_eye_left)
  26. #画右眼
  27. plot_part(lm_eye_right)
  28. #画嘴巴外轮廓
  29. plot_part(lm_mouth_outer)
  30. #画嘴巴内轮廓
  31. plot_part(lm_mouth_inner)

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 3watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 4watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 5watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 6

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 7watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 8watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 9watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 10watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 11

然后计算辅助的向量并画图看看

  1. # 计算一些辅助向量
  2. eye_left = np.mean(lm_eye_left, axis=0)
  3. eye_right = np.mean(lm_eye_right, axis=0)
  4. eye_avg = (eye_left + eye_right) * 0.5
  5. eye_to_eye = eye_right - eye_left#瞳距
  6. mouth_left = lm_mouth_outer[0]
  7. mouth_right = lm_mouth_outer[6]
  8. mouth_avg = (mouth_left + mouth_right) * 0.5
  9. eye_to_mouth = mouth_avg - eye_avg#眼睛到最的距离
  10. def plot_mean(part):
  11. plt.plot(part[0],part[1],'bo')
  12. plt.imshow(image)
  13. plt.show()
  14. plot_mean(eye_left)
  15. plot_mean(eye_right)
  16. plot_mean(eye_avg)
  17. plot_mean(mouth_left)
  18. plot_mean(mouth_right)
  19. plot_mean(mouth_avg)

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 12watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 13watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 14

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 15watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 16watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pob3VfNDM4_size_16_color_FFFFFF_t_70 17

这里利用上面的辅助向量进行计算,这里注意的是需要重新读图,因为我用之前cv2读的图会错,也许是自己bug

  1. import PIL.Image
  2. img = PIL.Image.open(res).convert('RGBA').convert('RGB')
  3. # Shrink.
  4. output_size=1024
  5. shrink = int(np.floor(qsize / output_size * 0.5))
  6. print(shrink)
  7. if shrink > 1:
  8. rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
  9. img = img.resize(rsize, PIL.Image.ANTIALIAS)
  10. quad /= shrink
  11. qsize /= shrink
  12. # Crop.
  13. border = max(int(np.rint(qsize * 0.1)), 3)
  14. crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
  15. print(crop)
  16. crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
  17. if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
  18. img = img.crop(crop)
  19. quad -= crop[0:2]
  20. # Pad.
  21. import scipy.ndimage
  22. enable_padding=True
  23. alpha=False
  24. pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
  25. pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
  26. if enable_padding and max(pad) > border - 4:
  27. pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
  28. img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
  29. h, w, _ = img.shape
  30. y, x, _ = np.ogrid[:h, :w, :1]
  31. mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
  32. blur = qsize * 0.02
  33. img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
  34. img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
  35. img = np.uint8(np.clip(np.rint(img), 0, 255))
  36. if alpha:
  37. mask = 1-np.clip(3.0 * mask, 0.0, 1.0)
  38. mask = np.uint8(np.clip(np.rint(mask*255), 0, 255))
  39. img = np.concatenate((img, mask), axis=2)
  40. img = PIL.Image.fromarray(img, 'RGBA')
  41. else:
  42. img = PIL.Image.fromarray(img, 'RGB')
  43. # Transform.
  44. transform_size=4096
  45. img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
  46. if output_size < transform_size:
  47. img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
  48. img.save(dis, 'PNG')

小结:挨着代码拷贝执行,就会得到想要的歪头转成正脸

发表评论

表情:
评论列表 (有 0 条评论,21人围观)

还没有评论,来说两句吧...

相关阅读

    相关 计算机视觉(三)

    1、滤波器 傅里叶变换主要作用反应图像各区域像素变化的幅度。 滤波器(核)矩阵:一组权重集合(内部所有值加和为0),作用在源图像的一个区域(滑动),并由此生成目标图像的一个

    相关 计算机视觉基本概论

    计算机视觉之基本概论 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使