376. 摆动序列

ゝ一世哀愁。 2023-10-16 14:58 117阅读 0赞

376. 摆动序列

  • 题干描述
  • 解题思路
    • 思路1(贪心解法)
    • 情况一:上下坡中有平坡
    • 情况二:数组首尾两端
    • 情况三:单调坡度有平坡
  • 代码实现

题干描述

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

  • 输入: [1,7,4,9,2,5]
  • 输出: 6
  • 解释: 整个序列均为摆动序列。

示例 2:

  • 输入: [1,17,5,10,13,15,10,5,16,8]
  • 输出: 7
  • 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例 3:

  • 输入: [1,2,3,4,5,6,7,8,9]
  • 输出: 2

解题思路

思路1(贪心解法)

本题要求通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

相信这么一说吓退不少同学,这要求最大摆动序列又可以修改数组,这得如何修改呢?

来分析一下,要求删除元素使其达到最大摆动序列,应该删除什么元素呢?

用示例二来举例,如图所示:
在这里插入图片描述
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。

局部最优推出全局最优,并举不出反例,那么试试贪心!

(为方便表述,以下说的峰值都是指局部峰值)

实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)

这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点。

在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

这是我们思考本题的一个大题思路,但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡

情况一:上下坡中有平坡

例如 [1,2,2,2,1]这样的数组,如图:
在这里插入图片描述
它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候要不删除左面的三个2,要不就删除右边的三个2。

如图,可以统一规则,删除左边的三个 2:
在这里插入图片描述
在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0

如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。

所以我们记录峰值的条件应该是:(preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了上面我说的这种情况。

情况二:数组首尾两端

所以本题统计峰值的时候,数组最左面和最右面如何统计呢?

题目中说了,如果只有两个不同的元素,那摆动序列也是 2。

例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。

因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。

这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。

不写死的话,如何和我们的判断规则结合在一起呢?

可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?

之前我们在讨论情况一:相同数字连续的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。

那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,如图:
之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。

那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,如图:
在这里插入图片描述
针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)。

情况三:单调坡度有平坡

在版本一中,我们忽略了一种情况,即如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:
在这里插入图片描述
我们需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。

本题异常情况的本质,就是要考虑平坡, 平坡分两种,一个是 上下中间有平坡,一个是单调有平坡,如图:
在这里插入图片描述

代码实现

  1. class Solution {
  2. // 376.摆动序列
  3. public int wiggleMaxLength(int[] nums){
  4. if(nums.length <= 1){
  5. return nums.length;
  6. }
  7. // 当前差值
  8. int curDiff = 0;
  9. // 上一个差值
  10. int preDiff = 0;
  11. int count = 1;
  12. for(int i = 1; i < nums.length; i++){
  13. // 得到当前差值
  14. curDiff = nums[i] - nums[i - 1];
  15. // 如果当前差值和上一个差值为一正一负
  16. // 等于0的情况表示初始时的preDiff
  17. if((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)){
  18. count++;
  19. preDiff = curDiff;
  20. }
  21. }
  22. return count;
  23. }
  24. }

参考资料:代码随想录-376. 摆动序列

发表评论

表情:
评论列表 (有 0 条评论,117人围观)

还没有评论,来说两句吧...

相关阅读

    相关 贪心算法-leetcode:376.摆动序列

    问题描述 如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。 例如, \

    相关 贪心——376. 摆动序列

    1 题目描述 如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也

    相关 LeetCode 376. 摆动序列

    解题思路 时间复杂度并不理想,没有想到使用波峰,波谷的o(n)算法。 这个dp也还勉强可以通过。 思路就是先计算出差值,然后对差值数组进行dp即可。 代码