PyTorch深度学习实战 | 典型卷积神经网络

╰半橙微兮° 2024-03-24 06:02 171阅读 0赞

b2b7161da25d4d83b4f05e664be5fcda.jpeg

在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产都起到了巨大的促进作用,如VGG、ResNet、Inception和DenseNet等,很多投入实用的卷积神经都是在它们的基础上进行改进的。初学者应从试验开始,通过阅读论文和实现代码(tensorflow.keras.applications包中实现了很多有影响力的神经网络模型的源代码)来全面了解它们。下文简要讨论两个有代表性的卷积神经网络,它们都是卷积层、池化层、全连接层等的不同组合。

01、VGG-16,VGG-19

VGG-16[32]是牛津大学的Visual Geometry Group在2015年发布的共16层的卷积神经网络,有约1.38亿个网络参数。该网络常被初学者用来学习和体验卷积神经网络。

VGG-16模型是针对ImageNet挑战赛设计的,该挑战赛的数据集为ILSVRC-2012图像分类数据集。ILSVRC-2012图像分类数据集的训练集有总共有1281167张图片,分为1000个类别,它的验证集有50000张图片样本,每个类别50个样本。

ILSVRC-2012图像分类数据集是2009年开始创建的ImageNet图像数据集的一部分。基于该图像数据集举办了具有很大影响力的ImageNet挑战赛,很多新模型就是在该挑战赛上发布的。

97bfbedb87a84153ac50e6c961971830.jpeg

图 1 VGG-16模型的网络结构

VGG-16模型的网络结构如图1所示,从左侧输入大小为224×224×3的彩色图片,在右侧输出该图片的分类。

输入层之后,先是2个大小为3×3、卷积核数为64、步长为1、零填充的卷积层,此时的数据维度大小为224×224×64,在水平方向被拉长了。

然后是1个大小为2×2的最大池化层,将数据的维度降为112×112×64,再经过2个大小为3×3、卷积核数为128、步长为1、零填充的卷积层,再一次在水平方向上被拉长,变为112×112×128。

然后是1个大小为2×2的最大池化层,和3个大小为3×3、卷积核数为256、步长为1、零填充的卷积层,数据维度变为56×56×256。

然后是1个大小为2×2的最大池化层,和3个大小为3×3、卷积核数为512、步长为1、零填充的卷积层,数据维度变为28×28×512。

然后是1个大小为2×2的最大池化层,和3个大小为3×3、卷积核数为512、步长为1、零填充的卷积层,数据维度变为14×14×512。

然后是1个大小为2×2的最大池化层,数据维度变为7×7×512。

然后是1个Flatten层将数据拉平。

最后是3个全连接层,节点数分别为4096、4096和1000。

除最后一层全连接层采用Softmax激活函数外,所有卷积层和全连接层都采用relu激活函数。

从上面网络结构可见,经过卷积层,通道数量不断增加,而经过池化层,数据的长度和宽度不断减少。

Visual Geometry Group后又发布了19层的VGG-19模型。

TensorFlow实现了VGG-16模型和VGG-19模型 。TensorFlow还提供了用ILSVRC-2012-CLS图像分类数据集预先训练好的VGG-16和VGG-19模型,下面给出一个用预先训练好的模型来识别一幅图片(图2)的例子。

682b81ed8111482db9609ac5f94bf6f3.jpeg

图2 试验用的小狗照片

代码清单1 VGG-19预训练模型应用(vgg19_app.py)

  1. 1. import tensorflow.keras.applications.vgg19 as vgg19
  2. 2. import tensorflow.keras.preprocessing.image as imagepre
  3. 3.
  4. 4. # 加载预训练模型
  5. 5. model = vgg19.VGG19(weights='E:\\MLDatas\\vgg19_weights_tf_dim_ordering_tf_kernels.h5', include_top=True) # 加载预先下载的模型
  6. 6. # 加载图片并转换为合适的数据形式
  7. 7. image = imagepre.load_img('116.jpg', target_size=(224, 224))
  8. 8. imagedata = imagepre.img_to_array(image)
  9. 9. imagedata = imagedata.reshape((1,) + imagedata.shape)
  10. 10.
  11. 11. imagedata = vgg19.preprocess_input(imagedata)
  12. 12. prediction = model.predict(imagedata) # 分类预测
  13. 13. results = vgg19.decode_predictions(prediction, top=3)
  14. 14. print(results)
  15. 15. #[[('n02113624', 'toy_poodle', 0.6034094), ('n02113712', 'miniature_poodle', 0.34426507), ('n02113799', 'standard_poodle', 0.0124355545)]]

可见,图片为toy poodle的概率最大,为0.6。

02、残差网络

随着网络层次的加深,训练集的损失函数可能会呈现出先下降再上升的现象,称为网络退化(degradation)现象。残差网络(ResNet)[33]提出了抑制梯度消散、网络退化来加速训练收敛的方法,克服了层数多导致的收敛慢、甚至无法收敛的问题,使网络的层数得以增加。

残差单元是残差网络的基本组成部分,它的特点是有一条跨层的短接。图3示例了一个残差单元。该单元有两条传递路径,除了常规的卷积、批标准化、激活处理路径外,还有一条跨层的直接传递路径。

0c62c703d4f547199254ea54871d2ae6.jpeg

图3 残差单元示例

残差网络一般要由很多残差单元首尾连接而成。残差网络的思想是通过跨层的短接,在误差反向传播时,去掉不变的主体部分,从而突出微小的变化,使得网络对误差更加敏感。通过短接还使得误差消散问题得到了较好的解决。试验结果证明残差网络具有良好的学习效果。

图3所示残差单元在TensorFlow框架下的实现见代码清单2,其中第28行是将两条处理路径传来的数据相加。该代码来自tensorflow.keras.applications包,该包包含了许多经典模型的实现代码,值得读者仔细分析。

代码清单 2残差单元[1]

  1. 1. def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None):
  2. 2. bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
  3. 3. if conv_shortcut:
  4. 4. shortcut = layers.Conv2D(
  5. 5. 4 * filters, 1, strides=stride, name=name + '_0_conv')(
  6. 6. x)
  7. 7. shortcut = layers.BatchNormalization(
  8. 8. axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')(
  9. 9. shortcut)
  10. 10. else:
  11. 11. shortcut = x
  12. 12. x = layers.Conv2D(filters, 1, strides=stride, name=name + '_1_conv')(x)
  13. 13. x = layers.BatchNormalization(
  14. 14. axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(
  15. 15. x)
  16. 16. x = layers.Activation('relu', name=name + '_1_relu')(x)
  17. 17. x = layers.Conv2D(
  18. 18. filters, kernel_size, padding='SAME', name=name + '_2_conv')(
  19. 19. x)
  20. 20. x = layers.BatchNormalization(
  21. 21. axis=bn_axis, epsilon=1.001e-5, name=name + '_2_bn')(
  22. 22. x)
  23. 23. x = layers.Activation('relu', name=name + '_2_relu')(x)
  24. 24. x = layers.Conv2D(4 * filters, 1, name=name + '_3_conv')(x)
  25. 25. x = layers.BatchNormalization(
  26. 26. axis=bn_axis, epsilon=1.001e-5, name=name + '_3_bn')(
  27. 27. x)
  28. 28. x = layers.Add(name=name + '_add')([shortcut, x])
  29. 29. x = layers.Activation('relu', name=name + '_out')(x)
  30. 30. return x

03、源码展示

链接: https://pan.baidu.com/s/1kG88Z39otL7GrVhiSOJlqA?pwd=6yb8 提取码: 6yb8

发表评论

表情:
评论列表 (有 0 条评论,171人围观)

还没有评论,来说两句吧...

相关阅读