决策树代码 r囧r小猫 2024-03-25 19:24 64阅读 0赞 决策树是一种用于分类和回归的机器学习算法。它使用一种树状的模型来做出决策。每个内部节点表示一个特征或属性,每个叶节点表示一个类别或值。从根节点开始,决策树递归地对特征进行测试,直到到达叶节点为止。 以下是一段使用 Python 实现决策树的示例代码: from sklearn import tree# 准备训练数据 # X 表示输入特征,y 表示输出类别 X = [[0, 0], [1, 1]] y = [0, 1] # 创建决策树模型 clf = tree.DecisionTreeClassifier() # 使用训练数据训练模型 clf = clf.fit(X, y)
相关 决策树代码 决策树是一种用于分类和回归的机器学习算法。它使用一种树状的模型来做出决策。每个内部节点表示一个特征或属性,每个叶节点表示一个类别或值。从根节点开始,决策树递归地对特征进行测试, r囧r小猫/ 2024年03月25日 19:24/ 0 赞/ 65 阅读
相关 决策树 [https://www.cnblogs.com/lovephysics/p/7231294.html][https_www.cnblogs.com_lovephysics_p 今天药忘吃喽~/ 2022年12月20日 02:22/ 0 赞/ 46 阅读
相关 决策树 决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制。例如,我们要对“这是好瓜吗?”这样的问题进行决策时,通常会进行一系列的判断或“子决策”:我们先看“ 旧城等待,/ 2022年05月25日 05:39/ 0 赞/ 379 阅读
相关 决策树 一、 决策树简介 决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。如图所示,决策树从根节点开始延伸,经过不 骑猪看日落/ 2022年05月17日 00:55/ 0 赞/ 340 阅读
相关 决策树 1 认识决策树 如何高效的进行决策? 特征的先后顺序(哪个特征先看,哪个特征后看) 2 决策树分类原理详解(看哪个特征能筛掉更多的数据,尽可能通过少 小咪咪/ 2022年04月23日 01:16/ 0 赞/ 266 阅读
相关 决策树 决策树 声明 本文是来自网络文档和书本(周老师)的结合。 概述 决策树(Decision Tree)是在已知各种情况发生概率的[基础][Link 1]上,通 青旅半醒/ 2022年01月30日 06:49/ 0 赞/ 514 阅读
相关 决策树 决策树对实例进行分类的树形结构,由节点和有向边组成。其实很像平时画的流程图。 学习决策树之前要搞懂几个概念: 熵:表示随机变量不确定性的度量,定义:H(p)=-![1409 冷不防/ 2021年09月30日 04:16/ 0 赞/ 544 阅读
相关 决策树 熵的定义 ![5057999-5702853710d12e87.png][] 计算给定数据集的熵 def calcShannonEnt(dataSet): 客官°小女子只卖身不卖艺/ 2021年09月15日 06:34/ 0 赞/ 496 阅读
还没有评论,来说两句吧...