CodeForces 52C Circular RMQ (线段树的区间更新+lazy tag)
You are given circular array a0, a1, …, a**n - 1. There are two types of operations with it:
- inc(lf, rg, v) — this operation increases each element on the segment [lf, rg](inclusively) by v;
- rmq(lf, rg) — this operation returns minimal value on the segment [lf, rg](inclusively).
Assume segments to be circular, so if n = 5 and lf = 3, rg = 1, it means the index sequence: 3, 4, 0, 1.
Write program to process given sequence of operations.
Input
The first line contains integer n (1 ≤ n ≤ 200000). The next line contains initial state of the array: a0, a1, …, a**n - 1 ( - 106 ≤ a**i ≤ 106), a**i are integer. The third line contains integer m (0 ≤ m ≤ 200000), m — the number of operartons. Next mlines contain one operation each. If line contains two integer lf, rg (0 ≤ lf, rg ≤ n - 1) it means rmq operation, it contains three integers lf, rg, v (0 ≤ lf, rg ≤ n - 1; - 106 ≤ v ≤ 106) — inc operation.
Output
For each rmq operation write result for it. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).
Example
Input
4
1 2 3 4
4
3 0
3 0 -1
0 1
2 1
Output
1
0
0
题解:
现在还在比赛。。但我已经写不出来题了,就来写博客了,好高兴线段树的题没看题解就写出来了,这几天线段树和树状数组的题没白刷,这题就是如果输入区间不是从小到大就分成两个区间做,然后要注意一下区间更新要lazy tag,延迟更新,然后输入的时候做点判断处理这题就ac了
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<stdio.h>
#include<math.h>
#include<string>
#include<stdio.h>
#include<queue>
#include<stack>
#include<map>
#include<deque>
using namespace std;
struct node
{
int l,r;
long long minn;
long long tag;
};
node t[200005*4];
int a[200005];
void Build(int l,int r,int num)//日常建树
{
t[num].l=l;
t[num].r=r;
t[num].tag=0;
if(l==r)
{
t[num].minn=a[l];
return;
}
int mid=(l+r)/2;
Build(l,mid,num*2);
Build(mid+1,r,num*2+1);
t[num].minn=min(t[num*2].minn,t[num*2+1].minn);//更新下最小值
}
void update(int l,int r,int num,int v)
{
if(t[num].l==l&&t[num].r==r)
{
t[num].minn+=v;
t[num].tag+=v;
return;
}
if(t[num].tag!=0)//除了这个都是日常更新,这个可以写成一个函数lazy tag,将上次没有更新的东西向下子节点更新
{
t[num*2].minn+=t[num].tag;
t[num*2+1].minn+=t[num].tag;
t[num*2].tag+=t[num].tag;
t[num*2+1].tag+=t[num].tag;
t[num].tag=0;//清除状态
}
int mid=(t[num].l+t[num].r)/2;
if(r<=mid)
update(l,r,num*2,v);
else if(l>mid)
update(l,r,num*2+1,v);
else
{
update(l,mid,num*2,v);
update(mid+1,r,num*2+1,v);
}
t[num].minn=min(t[num*2].minn,t[num*2+1].minn);//更新最小值
}
long long query(int l,int r,int num)//访问
{
if(t[num].l==l&&t[num].r==r)
{
return t[num].minn;
}
if(t[num].tag!=0)//和上面一样,pushdown
{
t[num*2].minn+=t[num].tag;
t[num*2+1].minn+=t[num].tag;
t[num*2].tag+=t[num].tag;
t[num*2+1].tag+=t[num].tag;
t[num].tag=0;
}
int mid=(t[num].l+t[num].r)/2;
if(r<=mid)
return query(l,r,num*2);
else if(l>mid)
{
return query(l,r,num*2+1);
}
else
return min(query(l,mid,num*2),query(mid+1,r,num*2+1));
}
int main()
{
int i,j,n,m,x,y,z,tag,flag;
char s[100];
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&a[i]);
Build(0,n-1,1);
scanf("%d",&m);
getchar();//吸收回车
for(i=0;i<m;i++)
{
tag=0;
gets(s);
x=0,y=0,z=0;
flag=0;
for(j=0;j<strlen(s);j++)
{
if(s[j]==' ')//根据空格数目判断情况,储存数据
{
tag++;
continue;
}
if(tag==0)
{
x=x*10+s[j]-'0';
}
else if(tag==1)
{
y=y*10+s[j]-'0';
}
else
{
if(s[j]=='-')
flag=1;
else
{
z=z*10+s[j]-'0';
}
}
}
if(flag)//z处有负号
z=-z;
if(tag==1)
{
if(x<=y)
printf("%I64d\n",query(x,y,1));//codeforce要用i64d
else
printf("%I64d\n",min(query(0,y,1),query(x,n-1,1)));//如果输入的y大于x,就分成两个部分
}
else
{
if(x<=y)
update(x,y,1,z);
else
{
update(0,y,1,z);//同理分成两个部分
update(x,n-1,1,z);
}
}
}
return 0;
}
还没有评论,来说两句吧...